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Abstract
An iterative algorithm to solve efficiently one-

sided interaction between two rectangular plates
within the Kirchhoff hypothesis is proposed. Then a 
proof of convergence of this algorithm is given. The
formulated theorem, proof and five remarks exhibit
advantages of our proposed novel approach.
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1 Introduction
Non-linear dynamics of plates and shells is

exhibited in various engineering structures
(buildings, bridges, tanks) and machines such as 
flight-vehicles, power plants and various
mechatronical devices.

In many engineering cases an interaction of multi-
layer plates play an important role, and hence they
require both careful mathematical modeling and
analysis. The mentioned interaction is associated
with one- and two-sided constraints creating a
complex but challenging topic of research from the
point of view of theory and application.

In reference [Krysko, Awrejcewicz 2005] complex
vibrations of an Euler-Bernoulli beam with different
types of non-linearities are considered. An arbitrary
beam clamping is considered, and a deflection 
constraints (point barriers) are introduced in some
beam points along its length. The influence of a
constraint, as well as of the amplitude and frequency
of excitation on the vibrations is analysed. Scenarios
of the transition to chaos owing to the introduced
non-linearities are reported.

In reference [Krysko et al., to appear] regular and
chaotic vibrations together with bifurcations of
flexible plate-strips with non-symmetric boundary
conditions are investigated by the Bubnov-Galerkin
method and a finite difference method of order
� �4hO . Special attention is paid to non-symmetric

boundary conditions. Lyapunov exponents are 
estimated via Bennetin’s method. Some new 

examples of routes from regular to chaotic dynamics,
and within chaotic dynamics are illustrated and 
discussed. The phase transitions from chaos to 
hyperchaos, and a novel phenomenon of a shift from
hyper chaos to another hyperhyper chaos is also
reported.

In the work by Awrejcewicz et al. [to appear] a
novel iteration procedure is proposed for dynamical
problems, where in each time step a contacting plate
zone is improved. Therefore, a zone and magnitude
of a contact load is also improved. The effect of
boundary conditions on externally driven vibrations
of uncoupled two-layer plates, with the Kirchhoff
hypothesis holding for each layer, is investigated.

Below, we consider mechanical one-sided
interaction between two rectangular plates. It is
assumed that the plates are thin and their stress-strain
state is governed by classical Kirchhoff’s theory
supplemented by physical nonlinearities introduced
by the theory of small elastic-plastic deformations.
We assume, in addition, that a contact pressure
(normal to stress surface) is significantly less in 
comparison to normal stresses measured in cross-
sections of a plate, and that the plates slip in contact
zones in a free way.

Note that the choice of the classical theory of 
plates is motivated by an observation that an
influence of transversal shear deformation on the 
stress-strain state and on the distribution of contact
pressure is essentially less important than that of 
transversal clamping in a contact zone. The latter 
factor plays a key role in our investigations.

2 Mathematical model
Differential equations governing behavior of

contacting plates have the form
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where:  – vector functions,  - vector
of external load, i – plate number measured in
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direction of a positive normal axis. Contact pressure 
being proportional to transversal clamping 

 in a contact zone is as follows 211 whw −−
 

)(),( 211 whw
h
Ekyxqk −−= , (2) 

 
and the function ψ has the form 

[ ] 2)(1 211 whwsign −−+=ψ ,  (3) 
 

where h1 denotes clearance between plates. 
Observe that formula (2) holds for plates contact 

with the same values of k and h. Contact problems of 
the Kirchhoff theory of plates are associated with 
Winkler’s type coupling between clamping and 
contact pressure. 

If the initial plates distribution (clearance function 
h1) and the load are such that there is no contact after 
deformation then ψ ≡ 0, and system (1) is uncoupled. 
Otherwise, system (1) contains coupled equations. 
Substituting (2) into (1) we have 
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Eighth-order system (4) is further studied in the 

frame of the following boundary conditions: 
а) ball-type support 
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b) stiff clamping  
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Therefore, the mentioned equations define a 

physically and constructively nonlinear eighth-order 
problem.  

Operator Аi (i = 1,2), for a physically nonlinear 
problem, has the following form [Krysko, 1976]: 
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and where z  = ai(x, y), z = bi(x, y), (x, y)∈Ω are the 
equations governing external plate surfaces, and 
allowing for introduction (during computations) the 
variated thickness of plates. 

Owing to application of the changeable elasticity 
parameters method [Birger, 1951] Ei(x, y, z, ei), 

 are treated as parameters depending on 
the deformed plate states and they have the following 
form 
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where K1i = const. Recall, that in the theory of 
deformation, the shear modulus is 
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where ,  are the intensities of plate stress and 
strain intensities , respectively, and 
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In (8),  are defined by flat stress condition state 

of the form (σ
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System (4) is solved by the method of variational 

iterations (MVI). In order to solve the constructively 
nonlinear problem (4) one may apply an iterative 
process allowing to solve only one equation from 
system (4) on each loading step. The same approach 
in the case of geometrically non-linear problems of 
shells has been proposed and applied in reference 
[Bochkarev, Krysko, 1981]. 

Application of the mentioned technique yields two 
times reduction of the system in the case of two 
layers package, and it yields n-times order reduction 
in the case of a package composed of n layers. 
Iterative procedure has the following form 
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One has to attach to system (10) the corresponding 
boundary conditions for the i-th plate. 

Let R2 be the Euclidean surface with Descartes 
basis; Ωi ∈ R2 is the area in this surface with its 
boundary ∂Ωi (i = 1,2), U iii ΩΩ=Ω ∂  (x, y)∈Ωi, 

Ω* is the sub-area of Ωi, i∀ , Ω*⊆Ωi, and ni is the 
external normal to ∂Ωi. 

As it has been mentioned already, equations (10) 
with the associated boundary conditions will be 
solved using MVI [Krysko, 2000; Kantorovich, 
1941]. For a fixed contacting zone both MVI and 
changeable elasticity parameters (CEP) procedures 
are applied with a successive improvement of a 
contacting zone by simple iterative procedure. Next, 
the solving procedure is repeated, i.e. we have three 
iterative procedures embedded in each other. 
Ordinary differential equations are reduced to 
algebraic ones by a finite difference method with 
accuracy of О(δ2), where δ is the mesh step. 
Algebraic equations are solved by the Gauss 
procedure on each time step. 
 

3 Proof of convergence of iterative algorithms 
We are going to prove the convergence of iterative 

algorithms used to solve contact problems of freely 
coupled plates within Kirchhhoff’s hypotheses. Next, 
we consider 3D plates construction consisting of 
contacting plates prescribed by Kirchhoff’s 
hypotheses, i.e. system (4) with an account of (5) has 
the following form 
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with the associated boundary conditions 
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and with the function defining the contacting plates 
zone Ω* of the form 
 

=),( yxψ {  *,y)(x,   ,1
*,),(  ,0

Ω∈
Ω∉yx  

 
where q1(x, y), q2(x, y) are the functions of external 
loads acting on the first and second contacting plate, 
respectively; || ⋅ ||A is the norm in the normalized 
space А; (⋅, ⋅)В denotes scalar product in the Hilbert 
space В (notation of functional spaces corresponds to 
that used in reference [Ladyzhenskaya, Uraltseva, 
1973]). 

In order to solve problems (11) and (12), the 
following iterative algorithm is applied 
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The following theorem holds. 

Theorem. Let Ωi, (i = 1,2) be bounded areas with 
the boundaries ∂Ωi that satisfy Sobolev’s embedding 
theorem conditions [Ladyzhenskaya, Uraltseva, 
1973], let Ω* be the measurable space, qi(x, y) ⊆ 
L2(Ωi) and let there be real constants ci > 0, Di > 0, 
such that 
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Proof. Only fundamental proof steps will be given. 
The conclusion of the first theorem follows from the 
theory of solvability of elliptic equations 
[Ladyzhenskaya, Uraltseva, 1973] assuming that 
initial approximations wi

0 ∈ L2(Ωi), i = 1,2. 
The conclusion of the second theorem proves an 

existence of a general solution to problems (11) and 
(12) in the space  and a strong 
convergence of a sequence of approximating 
solutions {w

)()( 2
2

21
2

2 Ω×Ω WW &&

i
(n)} to exactly one wi

* with respect to the 
space norm , i = 1,2. In order to prove the 
second conclusion the following operations should be 
applied: 
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1) Functions wi
(n) (i = 1,2) are computed from each 

of equations (13); 
2) First equation of the obtained system is 

multiplied by (w1
(n+1)- w1

(n)), whereas second 
equation is multiplied by (w2

(n+1)- w2
(n)); 

3) Again, the first equation is integrated in the 
space Ω1(Ω2). As a result, after application of the 
Green formula one gets 
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Owing to the definition of functions ψ(x, y), 
equations (15) and (16) assume the form 
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Applying Young’s inequality [Ladyzhenskaya, 
Uraltseva, 1973], equations (17), (18) and the 
theorem condition, we have 
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Inequalities (19), (20) are rewritten in the form 
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where α∈R1,  0 < α < 1. 

Next, we apply the Friedrichs inequality 
[Awrejcewicz, Krysko, 2003] in the follo
One may find a constant ci∈ R1 
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Owing to (23), the inequalities (21) and (22) have the 
following form 
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It follows immediately that 0 < ρ < 1. 
Now, inequalities (24) and (25) can have the 
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Matching inequalities (26) and (27) yields 
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Inequality (30) implies fundamentality of the 
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Systems (13) and (14) can be presented in the 

following integral form  
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Owing to condition (21), one may apply a limiting 
transition for n → ∞ in equations (22) and (23) to get  
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which proves the second conclusion of the theorem. 
 

Remark 1. Convergence of the iterative algorithm 
is easily extended into the case of other boundary 
conditions. For instance, the proposed scheme of the 
pr s valid when one oroof remain

ates are ball-type supported. 
 two contacting 

pl

Remark 2. The proposed iterative algorithm can be 
applied in the problems of contacting plates taking 
into account physical nonlinearities (matching with 
the method of elastic solution of Iliushin causes that 
the scheme of proof remains valid). 

Remark 3. Convergence of the proposed iterative 
algorithm can be extended into solution of contact 
problems of 3D constructions composed of freely 

+

222
2
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1
2

2

2,11 , L

n

yy
w

B ϕ
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co
for each plate, as well as for combined models, i.e. 
when one of the layers is 
Kirchhoff’s hypothesis, and for other one the 

upled plates within Timoshenko type hypotheses 

associated with the 

Timoshenko assumptions hold.  
Remark 4. In relations (1), (4), (10), (11) and (13), 

0
ii qq = 2

2

t
wh

g
y i

∂
∂

−
t

wh i
i ∂

∂
− ε  d tes intensity of 

the given external loads and inertia forces acting  
the i-th

eno

on
 plate are taken into account according to 

d’Alembert’s principle; iε  is the coefficient of the 
echanical property medium;m  −g  acceleration of 

ravity; g −γ  unit material gravity coefficient; −t  
time.  

Remark 5. The proposed iterative procedure is 
carried out on each time step.  
 

4 Conclusions 
This paper is basically devoted to a rigorous proof 

of convergence of the iterative algorithm applied to 
solve contact problems of freely coupled plates 
within Kirchhoff’s hypotheses. The main effort of 
our research is focused on the formulation of a 

eorem and its proof. It is expected that the given 
theorem may play an important role in various 

plates and shells dynamics with both 
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