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Abstract
In this work, methods of analysis and model of

dynamics of contact bush-shaft systems, including
heat generation and wear exhibited by such systems,
are presented. The considered problem is reduced to
analysis of ordinary differential equations governing
the change of velocities of the contacting bodies, and
to study of the integral Volterra type equation
governing contact pressure behavior. Thresholds of
chaos have been found due to analysis of Lyapunov
exponents, phase portraits, Poincaré maps and power
spectra. The following theoretical approaches are
applied: perturbation methods, Melnikov techniques,
Laplace transformations, theory of integral equations
and various variants of numerical analysis. 
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1  Introduction
Friction, wear, heat generation accompanying

friction, and heat expansion (or contraction) are all
very complex phenomena that interact and form one
complex multidimensional dynamic system analyzed 
together with friction. For the non-stationary friction
process, all of its time depending parameters are
interrelated.

Classical problem concerning vibration of a friction
pair consisted of pad and rotating shaft fixed to a
frame by mass-less springs (simple model of typical
braking pad or the so called Pronny's brake) has been
investigated in references [Andronov et al.,(1966),
Neimark (1978)]. In works of [Pyryev et al., (1995),
Pyryev, Grylitskiy, (1995)] the so called thermo-
elastic contact between a rotating cylinder and a
fixed non-inertial pad has been studied. In what
follows more complicated axially symmetric problem
of both regular and chaotic self-excited vibrations
(caused by friction) and wear of the rotating cylinder
and the pad (fixed to a frame by springs and viscous
damping elements) is investigated.

It should be emphasized that usually either
tribological processes occurring on the contact
surfaces are not accounted, or inertial effects are
neglected. In other words, both mentioned processes

are treated separately. In this work both elements of
complex contact behavior are simultaneously
included into consideration, which allows for a 
proper modeling of the real contact system dynamics.
Analytical and numerical analyses are carried out in a
wide aspect through investigation of various types of
nonlinearities, damping and excitations applied to the
analyzed system. A Duffing type elastic nonlinearity,
a nonlinear density of the frictional energy stream, a 
nonlinear friction dependence versus velocity and a
nonlinear contact temperature characteristic, as well
as nonlinear character of a wear are accounted,
among others.
We consider thermo-elastic contact of a solid

isotropic circular shaft (cylinder) with a cylindrical
tube-like rigid bush, where the bush is linked with 
the housing by springs and a damper.

This paper extends analysis carried out in reference
[Awrejcewicz, Pyryev, 2003]. Contrary to the
previous results, a novel mechanism of contact
between bush and shaft is proposed, a viscous
damping is added, and an influence of tribologic
factors as well as chaotic dynamics is analyzed. It has
been shown that (owing to wear) chaos vanishes,
since there is a lack of contact between both bodies.
Owing to heat generation through friction, either
chaos vanishes or thermal instability appears.

2 The system under analysis
Consider thermo-elastic contact of a solid isotropic

circular shaft of radius with a cylindrical tube-
like rigid bush of external radius , which is fitted 
to the cylinder according to the expression
( ,

1R

2R
)(thU U�

1)( �thU ��t ). The internal bush radius is: 

��UR1  ( 11 ��� RU ) (Figure 1). The bush is linked
with the housing by springs and the damper with
viscous coefficient c .
We assume, that the bush is a perfect rigid body, 

and that radial springs have the stiffness coefficient
, whereas tangent springs are characterized by

non-linear stiffness  and of Duffing type. In
addition, the bush is subjected to a damping force
action in tangent direction. The cylinder rotates with 
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a such angular velocity , that the 
centrifugal forces may be neglected. We assume that 
the angular speed of the shaft rotation changes in 
accordance with 

)()( 1
1 ttt ω−

∗=Ω

tkk ωζωω ′+= sin1 . We assume 
that between bush and shaft dry friction appears 
defined by the function , where  is a 
relative velocity between the two given bodies 

)( rt VF rV

121 RRVr ϕ&−Ω= .  denotes the mass moment of 
inertia. We assume also that in accordance with the 
Amontos assumption the friction force reads: 

 (  is the kinetic friction 
coefficient). 
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Figure 1  The analyzed system 

 
  The friction force  yields heat generated by 

friction on the contact surface , and wear  
of the bush occurs. Observe that the frictional work is 
transformed to heat energy. Let the shaft temperature, 
denoted by , be initially equal to . It is 
further assumed that the bush transfers heat ideally, 
and that between both shaft and bush the Newton’s 
heat exchange occurs and that the bush has constant 
temperature . As a first approximation to the 
studied problem we assume that . 

tF

1RR = wU

),(1 trT 0T

0T
constT =0

3  Mathematical formulation of the problem 
  Vibrations of the bush being in thermoelastic 
contact with the rotating shaft are governed by the 
following dimensionless equation (inclusions) 
[Awrejcewicz, Pyryev, 2002]: 
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with the initial condition 
oϕϕ =)0( , .   (2) kωϕ =)0(&

The thermoelastic problem under consideration takes 
the following dimensionless form [Nowacki, 1986] 
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Applying the Laplace transformation [Carslaw, 
Jaeger, 1959] to equations (3)-(7), the following 
integral equation is found 
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Temperature occurred on the contacting surface reads 
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mµ ,...)3,2,1( =m  are the roots of characteristic 
equation 0)()( 10 =− µµµ JBiJ . 
  In equations (1)-(11) the following dimensionless 
quantities are introduced 
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and  is the un-stretched spring length,  is the 
length of the compressed spring for 

0l 1l
02 =ϕ , 

( ),  is the elasticity modulus, 0>∗k 1E 1ν  is the 
Poisson coefficient, 1α  is the coefficient of thermal 
expansion of the shaft, Tα  is heat transfer 
coefficient,  is thermal diffusivity, 1a 1λ  is thermal 

conductivity, )(2 tϕ  is the angle of bush rotation, wK  
is the wear coefficient, η  is denotes the part of heat 
energy associated with wear ]1,0[∈η ,  is time of 
contact ( ). 

ct
0)(,0 ><< tPtt c

  Notice that the stated problem is modeled by the 
both nonlinear differential equation (inclusions) (1) 
and integral equation (9) governing rotational velo-
city )(τϕ&  and contact pressure ).(τp  Temperature 
and wear is defined through equations (10) and (8). 

4  Analysis of the investigated process 
  Let us assume that the relative velocity dependence 
is approximated by the function [Awrejcewicz, 1996] 
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In the numerical analysis, function  is 
approximated by [Martins et al., 1990] 
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4.1  Melnikov’s method 
  A particular case of our problem is further studied 
( 0=γ , , 0=wk 1)( →τp ). In order to estimate 
analytically the critical parameters responsible for 
chaos occurrence often the Melnikov’s technique 
[Melnikov, 1963] is used. In this case the Melnikov 
function reads (see [Awrejcewicz, Pyryev, 2003]) 
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In equation (15) the term )( 0τI  is defined by the 
formula 
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where  are the roots of the equation mt
( ) 0)()(sin)( 000 =−++= mmkkmr tytt τωζωω ,   (17) 

and 
( ) )()()(cos)( 3

00000 tbxtxtt kr +−+=′ τωωζω .    (18) 
If the Melnikov function (15) changes sign, then 
chaos may occur. 

4.2  Calculation of Lyapunov exponents 
  A particular case of our problem is further studied 
( 0=γ , , 0=wk 1)( →τp ). 
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  Note that while computing Lyapunov exponents, 
besides the following equations 
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also three additional system of equations ( 3,2,1=n ) 
with respect to perturbations are solved 
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Twelve equations of system (19),(20) are solved 
using the fourth order Runge-Kutta method and 
Gram-Schmidt reorthonormalization procedure. 
  Let 0

0
~x , 0

0
~y , 0

0
~z  be initial values of perturbation 

vectors which are orthonormal. After time T  an orbit 
)(τx  reaches the point  with the associated per-

turbbations 
1x

1
~x , 1

~y , 1
~z . Then the so called Gram-

Schmidt reorthonormalization procedure is carried 
out and the following new initial set of conditions is 
formulated 
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In what follows, after time interval T , a new set of 
perturbation vectors 2

~x , 2
~y , 2

~z  is defined, which is 
also reorthonormalized due to the Gram-Schmidt 
procedure (21). This algorithm is repeated M  times. 
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. Finally, a spectrum of three 
Lyapunov exponents is computed via formulas 
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where the occurred vectors are taken before the 
normalization procedure. 

3.3  Numerical Analysis 
  Our numerical computation are carried out for the 
particular case ( 0=γ , ). The following 
dimensionless parameters are taken: 

0=wk

3.00 === βαF , 20 =ω , 4.0=kω , , 1=b 1.0=ε . 
  In Figure 2 the Melnikov’s function )( 0τM  for 
different values of parameter kζ  before and after 
sign change of )( 0τM  is reported. One may 
convince himself that both analytical and numerical 
predictions of chaos coincide. 
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Figure 2  The Melnikov’s function )( 0τM  versus 
parameter 0τ  for 9.3=kζ  (continues curves) and 

for 2.4=kζ  (dashed curves), . 11 =h
 
Numerical analysis is carried out for the bifurcation 
diagram with respect to x  vs. kζ  for  )12,0(∈kζ . 
The obtained results are shown in Figures 3 for the 
case 11 =h .  
 

   
Figure 3  Bifurcation diagrams using kζ  as control 

parameter, 0=γ , , , . 0=wk 1=b 11 =h
 
The Lyapunov exponents in time interval 

)1514,1200(∈τ  ( )0,0,1(~0
0 =x , )0,1,0(~0

0 =y , 

)1,0,0(~0
0 =z , 005.0=T , ) are 

computed due to formulas (13) for the same values of 
parameters. In Figures 4 dependencies of Lyapunov 

80000=M
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exponents on the control parameter kζ  are reported. 
A study of both Lyapunov exponents and bifurcation 
diagrams implies that chaos begins for 25.4=kζ , 
for  (notice that the largest Lyapunov exponent 11 =h

1λ  is positive). An increase of the parameter  
responsible for damping yields an increase of the 
amplitude of the bush, where chaos is birthed. 

1h
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Figure 4  Lyapunov exponents using kζ  as control 

parameter, 0=γ , , , 0=wk 1=b 11 =h . 
 
  In a general case, numerical analysis is carried out 
for a steel made shaft ( , 

, 

16
1 C1014 −−⋅= oα

)Cm/(211
o⋅= Wλ 3.01 =ν , , 

). Observe that no accounting of 
tribological processes (

sa /m109.5 26
1

−⋅=

Pa1019 10
1 ⋅=E

5.01 =h , 9.3=kζ , 0=γ , 

) yields chaotic dynamics (Figure 5, curve 2).  0=wk
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Figure 5  Phase plane of bush motion for 5.01 =h , 

: curve 1 – 0=wk 5.3=kζ , 0=γ , curve 2 – 

9.3=kζ , 0=γ , curve 3 – 5.3=kζ , 87.1=γ , 
curves 4 – 9.3=kζ , 87.1=γ . 

For 5.01 =h , 5.3=kζ , 0=γ ,  regular 
motion takes place (Figure 5, curve 1). An accout of 
thermal shaft extension (

0=wk

87.1=γ ) removes chaotic 
behawiour of our system (Figure 5, curves 3 and 4). 
For 5.3=kζ  a subharmonic motion with frequency 

20ω  is obtained (Figure 5, curve 3), whereas for 
9.3=kζ  periodic motion is exhibited (Figure 5, 

curve 4). 
  Owing to an accout of wear ( ) and 
neglection of shaft heat extension (

01.0=wk
0=γ ), contact 

preasure tends to zero, whereas cylinder wear 
approaches  (∗U 0)( →τp , ). The non-
dimensional bush wear is presented in Figure 6, 
curve 1. In addition, in Figure 6, curves 1 and 2 
represent time histories of the dimensionless contact 
pressure. 

1)( →τwu
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Figure 6  Dimensionless contact pressure )(τp  and 

wear  versus dimensionless time )(τwu τ : 

curves 1 – 5.3=kζ , 0=γ , , 01.0=wk 5.01 =h , 

curve 2 – 9.3=kζ , 0=γ , , . 01.0=wk 5.01 =h
 

A simulteneous account of shaft extension and bush 
wear yields a finite time of contact between both 
bodies. For instance for , 5.01 =h 9.3=kζ , 

87.1=γ ,  contact pressure vs. time is 
exhibited by curve 4 in Figure 7. The dimensionless 
time contact interval is 

01.0=wk

72=cτ . For 5.3=kζ  time 
contact is 8.65=cτ . 
  In Figure 8, curves 3 and 4 represent the 
dependence of non-dimensional wear on the 
dimensionless time in a genaral case. Curve 3 
corresponds to 5.01 =h , 5.3=kζ , 87.1=γ , 

, whereas curve 4 is associated with the 01.0=wk
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  Influence of tribological processes on dynamical 
behaviour of the analysed system in the vicinity of 
chaos has been illustrated and discussed. An account 
of bush wear and neglecting of shaft thermal 
expansion implies that the contact pressure tends to 
zero, the bush wear approaches the values of the 
shaft compressing, and bush vibrations are damped. 

following parameters: 5.01 =h , 9.3=kζ , 87.1=γ , 

. Owing to heat shaft extension, the wear 
of bush is increased on amount of thirty times (see 
curve 4 and 2 in Figure 8). 

01.0=wk
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4

τ  

  On the other hand, taking into account shaft thermal 
extension and neglecting of bush wear results in 
chaos vanish and occurrence of a regular motion. 
  In a general case (both shaft thermal extension and 
bush wear are taken into account), time interval of 
two bodies contact is bounded. After a lack of 
contact, the bush stops due to extensive wear process. 
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