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ANALYTICAL PREDICTION OF STICK-SLIP CHAOS IN R*

J. Awrejcewicz®, D. Sendkowskif , TUL, Lodz, POLAND

Abstract

‘We consider two coupled oscillators with negative Duff-
ing type stiffness which are self (due to friction) and exter-
nally (harmonically}) excited. The Melnikov-Gruendler ap-
proach is used to define the Melnikov’s function including
smooth and stick-slip chaotic behaviour. Next, we present a
threshold curve obtained for selected values of parameters.

INTRODUCTION

1t is needless to say that a prediction of chaos in an an-
alytical way in non-smooth objects modelled as systems in
R* plays a crucial role for both theoretical and applicable
reasons. A key role of research carried out in this direction
plays the paper by Awrejcewicz and Holicke [1], where a
chaotic threshold for both smooth.and stick-slip chaotic be-
havicur in one degree-of-freedom system with friction has
been obtained using directly the Melnikov’s technique [5).
On the other hand, it was impossible to extend directly the
original Melnikov's method devoted to analysis of an an-
alytic system in R2. Therefore, we have applied the Gru-
endler extension of the Melnikov’s method to R*, which
is further referred as the Melnikov-Gruendler approach.
However, in the cited Gruendler’s work [4] again an em-
phasis of C? systems is given. In contrary, in our research
we extend the results obtained earlier (see [1]) to R%. Al-
though we do not give a rigorous definitions and proofs of
a C™ vector field on R™, but we show the computations
of related integrals yielding a being sought chaotic thresh-
old defined by the approproate Melnikov’s function. Fur-
thermore, a reduction of the obtained Melnikov integrals to
those associated with previously considered one degree-of-
freedom mechanical system indicate a validity of our ap-
proach.

THE MELNIKOV-GRUENDLER
FUNCTION

The analysed mechanical object consists of two stiff
bodies with the masses m coupled via linear and nonlin-
ear springs in the way shown in Figure 1. Note that when
the system is autonomous, i.e. I' = 0, the self-excited os-
cillations appear, which are generated by frictional charac-
teristics. The latter ones possess a decreasing part versus
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Figure 1: The analysed system.

a relative velocity between both bodies and the tape mov-
ing with a constant velocity w. Although this problem be-
Iongs to classical ones and has been studied by vast number
of researchers, an attempt to formulate threshold for chaos
occurence in the analytical way failed. In what follows we
show how to solve this problem using the Melnikov tech-
nique applied to our discontinuous system. It is also rec-
ommended to be familiar with the reference [1], where a
similar like approach has been applied to predict chaos in a
similar Jike system, but with one degree-of-freedom.

Dynamics of our system is govemned by the following
ODEs:

(21 = p/m
= kx; — EI? + ko (Il - Iz) - Eo (:L‘l - :172)3
) +&;I" cos (wt) ~ e (pl /m - w)
Z2 = pafm
Pr = kzo —kzd — ko (31 — 22) + Ko (1 ~ 13)°
L —£3T3 (p2/m — w)
. (1)
where:

T; {p;/m —w) = Tipsgn (p;/m — w) — B (pi/m — w)
+ Bia (pi/m — w)’
2)

and w is the tape  velocity, whereas
Bll 3 Bl2 , Bgl , ng, TlOa ng are the friction coefficients.

Introducing the following scaling
| k
v =piif g 3)

t——)t\li T = T4 E
m1 — 41 k:
y=24/7, v=pi
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and the following relations

ko = ¢k, ko =tk wheref >0, (5)

the analysed ODEs are cast in the nondimensional form

i
z—2° + fe (z,y)
v

y— 4>~ fe(z.y)

0 b
eI cos (w't) ~ eTy (u— w')

0

—&3T} {v —w')

[~ N T

©)
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where
T} (9} — w') = Ty sgu (p}, — w') — By (v} — ')

7
+B:-'2(p:-'—w’)3, ( )

- P

'=r gg,w'=w\/ﬂaﬂoﬂﬂo Pt (8)
By k®Bis km

I ! L r_ felie

i1 = m y APin m3§:3 s W w k 3 (9)

and R

fimy) =@ -y -Ez-y). (10)
Forg; = £2 = &3 = 0 one gets the unperturbed system
with the associated Hamiltonian

22_ 1 2 _ 2 E 2 __ 2
2+Z( 1) +4(y 1)

(g

Next, we consider a linearization along a homoclinic orbit
v(t):

a
H="+
(1)

(12)

g(t) = \/%flsech(t 1+2§). (13)

The lineatized system of the unperturbed equations (6) in
vicinity of the homoclinic orbit  (£) reads’:

b=t -

where:

fo=(1+6-3(1+46) ¢ ) s +£ (1247 (1) 1) s

3 =14 -

Solving these eguations we obtain the fundamental solu-
tions:

{80,9@,9@, 4}, (15)
Next, we seek a special solution such that 3 (™) (¢) 22£=,

o0, 50 combining the equations (14) we get:
d1 = (1+26) (1 ~ Gsech? (t 1+ 25)) ¢, (16)

where ¢y = 1 ~ 3. Since ¢ (¢) is a solution to the above
equation and applying the following substitution ¢ (£) —
r (t) ¢ (£), we obtain:

Fg+ 20§ =0, )]
Integrating of (17) and owing to the obtained results, the
solution reads

510 = 20114(0) ~ 21 ctgh (9 1)

1 . (18)
+ 'gCl sinh (2t) ¢ (£) + Cog (t) -
Itis easy to see that the above solution possesses the desired
asymptotics and it is denoted by 12} (¢).
According to Gruendler’s theory (see [4]) we compute
only the following quantities:

Bh(v(2),t +to,0
Ko (¢, t()) — det{w{l), (7( 2951_ 0 )’w(l‘l)’«d,(ﬂ},

(19)
where Ko (t,1g) represents the projection onto the direc-
tion ¢(2 (£) of the &; of the h evaluated along + (£). In our
case the perturbation term has the following form:

hote) eI cos (w't) g Tl w=-w)|
—e3Td (v —w')
Making use pf (20) and (19) we get:
Ko (t,t0) = 2lgcos (w' (£ + to)), (21)
Ko (t,t0) = =24 (1) T} (§ — v'), 22
Koz (t,0) =24 (£) T3 (4~ w')}. (23)

The Melnikov-Gruendier function is defined as follows:

‘1 4
M (to) = — ) My (to) = —Ef

=1 =177

o0

ng (t, to) dt.
oo

24)
In order to find the Melnikov-Gruendler function, first we

du = (1+&—3(1+4¢) 2 ©) s + £ (1262 (8) — 1) have to find thefuntions Ms; (ta), where:

(14)

1Ror more details see [31[4]

My (to) = f Koy (t,10) dt. 25)
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Taking into account (21) we get:

My (tg) = — 2v2I'"xw' % .
V1+8 26)

L

x sech (2\/1_——2—) sin. (w'to)
M) =2 [ aTi@-w)ds

lv 4]
— 2}y [ gsgn(a- et

—0
— 28, [ §(d—u')dt
+2Bl, f d(G-w)’dt
e @n

o Bp 142 o

3 111+8§

B, (1+2§) vz

35 35)

2
+8Bl,w '21+ f\/r

0
+ 277, f gsgn (g — w') dt.
—o0

In order to integrate the last term in the above expression
we transform the intergal into the foilowing form:

/:mé(t)sgn(d(t)—W')dt= iizg\/l-yzg

oo (28)
« [ im0 -9
where §(t) = ~v/2sech (t) tgh () and w' = w' ¥LEE,

Analysing the above integral we find two different cases
with respect to the value of #'. Assume first that w' >

1/ V2, then:

[ i0sm @ - i ar=sen(-a) [ s a=

. =)
The second case we obtain for w’ < 1/v/2:

o ) {1 . io .
/ dsegn (G- )dt——/ cidt+f qGdt
-0 o —D0 i1
- / gdt = 2v/2 (sech (t3) — sech (¢1))

tz

(309

where:

t2=1n(i 1-y1- 2w’)

m(l_\/__g - )

Next, we substitute the obtained result to (27) and we find:
' 1+2
Mas (fg) Bul+8§\/1+2

3
g, A% s

357 (14 8¢)

1+2
AL e

, 207 (1
-]'4\/_ Wﬂ (ﬁ—w)

x (sechip — secht;),

where & (z) is Heaviside's function. In the similar way we
obtain Moz (¢5). Making use of the obtained results and
(24), we get the Melnikov-Gruendler function:

U S '
M (tg) = -2V 2" mw T+ 8 ech(zm)

(11269
x sin (w'ty) — "‘E,_(%"és)"é")" (Bl — Bn)
(1+26)%/° 1y [ 4 20428
+ 81—+8£_ (Biz — Bay) | w m
3/2
P4V (Tl ~ Th) SE2T

1+8¢
x {sech (t2) —sech (,)}.

: (32)
Note that for £ = 0 we obtain Melnikdv’s function for one

degree-of-freedom which is in accordance with the result
obtained in [1].

0.8

Figure 2: The threshold curve.

It is clear that having analytical form of the Melnikov-
Gruendler function various contro} parameter can be taken -
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to show regular and/or chaotic behavior. Let us take, fol-
lowing the paper [1], two of them ie. {I'',w'}. The ob-
tained curve (see Figure 2) defines a chaotic threshold.
Namely, above the mentioned curve chaos is expected,
whereas below a regular behavior is expected. Observe
a cusp in Figure 2 that comresponds to 2 switch between
smooth and stick-slip dynamics. The switch takes place
exactly for the tape velocity w’ = 1/v/2. In order to
plot the threshold curve we have taken the following val-
ues { = 0.1,7y, = 0.45,755 = 0.15, By, = 0.25, B}, =
0.15, B, = 0.35, By, = 0.2. To sum up in this paper an
important problem related to stick-slip chaos prediction is
solved. It possesses a challenging impact on analysis of all
mechanical systems with friction since many of them can
be modelled by two degrees-of-freedom objects.
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