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COMPLEX VIBRATIONS OF SPHERICAL AND CONICAL SHELLS 
WITH VARIABLE THICKNESS 

V. A. Krysko, J. Awrejcewicz and Т. Shchekaturova 

Abstract. In this work chaotic vibrations of deterministic and geometrically 
nonlinear elastic spherical and a conical axially symmetric shells with non-
constant thickness subject to sinusoidal-type load are analyzed. Hybrid type 
variation equations are used to model the investigated problem. It is assumed 
that the shell material is isotropic and that the Young law holds. Both 
influence of inertial forces tangent to the mean shell’s surface and inertial 
rotation of normal cross section are neglected. A transition from PDEs to 
ODEs with respect to time (the Cauchy problem) is realized through the Ritz 
procedure. Then the Cauchy problem is solved using the fourth order Runge-
Kutta method. 
New routes from harmonic to chaotic vibrations are detected and illustrated. 
Influence of various system parameters (shell deflection, amplitude and 
frequency of the excitation force, thickness variability, approximation modes 
number) on systems dynamics is analyzed, among others. 

1. Introduction 

 Although many papers and books are devoted to analysis of spherical and shallow shells 

exhibiting thickness variability, mainly linear and stability problems are analyzed. In contrary, in this 

work we are focused on analysis of chaotic vibrations of the above mentioned shells. It should be 

emphasized that spherical shallow shells with constant thickness and rectangular plates subject to 

longitudinal sinusoidal – type loads are studied in references [1-7]. 



2. Problem formulation and the method of its solution 

 The shallow shell being a closed 3D object in  with attached curvilinear coordinates с 3R

γβα , ,  is studied. The action principle reads  

  0)( =++− ∫∫ wdsRUU cu δδ , (1) 

where the first term represents the virtual work of elastic forces acting in the shell’s material, whereas 

the second term expresses load, inertial and dissipative virtual works of the form 
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 In result of computations the following variation equation is obtained 

  ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

                                                                                                         .0)(

,1
2

1,
2
1,1

2

...

2
2

022
2

∫∫

∫∫
=⎥

⎦

⎤
⎢
⎣

⎡
+−−

−
⎭
⎬
⎫+−∆−

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ++∆−−−∆

wdsww
g

hq

dsL
Eh

wwwLwwLwD
k

δγ

ϕϕνϕϕϕνδ  (3) 

 In order to solve equation (3), where the deflection function and the Airy’s (stress) function w

ϕ  are the independent and being sought functions, a direct application of the Ritz method fails. A 

reason is that the left hand side of this equation is not the variation of a functional. Let us develop w 

and ϕ  into two truncated series of linear functions satisfying main boundary conditions. In the case 

of axially deformed shallow rotational shell, the mentioned functions read 
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where the coefficients  are being sought time dependent functions. Substituting (4) into 

(3), carrying out a variation procedure and comparing to zero the coefficients standing by

)(   ,  )( tytx ii

ii yx δδ   , , 

the following ODEs with respect to  are obtained )(   and  )( tytx ii

  
,0

2
1

,)( 0
...

=++

=++++

ikpkijpjipi

ipkikppipkikkkik

xxDyExC

qQyxDyCxBxxA ε
 (5) 

where  denote matrix coefficients. pjikpipikik EDCBA  , , , ,
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 Solving the second equation of system (5) with respect to , one gets iy
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 Multiplying the first equation of (5) by , and denoting , the following Cauchy 

problem is defined 
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 Note that the applied transformation is allowed since matrices  exist because the 

coordinate functions are linearly independent. Equations (7) are solved using the fourth order Runge-

Kutta method. The system (7) is integrated using the following initial conditions 
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 The movably supported spherical and conical shells, treated as plates with initial 

deflection , , correspondingly, where )1( 2
0 ρ−−= kw )1(
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deflection arrow, are studied. The being approximated functions for the given boundary conditions 

read 
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3. Reliability of the obtained results 

 The earlier introduced Ritz algorithm allows to solve a wide class of static as well as dynamical 

problems. A solution to static problems can be obtained through the ‘set-up’ method applied firstly 

by Fedos’ev [8]. Solving the Cauchy problem for crεε =  for different values of transversal the 

following maps are defined { } { }iii wq ϕ,→ , and hence the dependencies [ ])0(wq  are constructed and 

the stress-strain design state is analyzed. The obtained results are compared with those obtained using 



the Ritz method for static higher order problems (m = n = 3) by Kantor [9]. The graph q(w) obtained 

by Kantor fully coincide with those obtained through our approach. The digits in the parameter q are 

associated with the deflection arrow k. 

 In order to compare various dynamical behaviors of the investigated systems, a concept of 

phase space is applied. The partial differential equations governing continuous systems (4) are 

substituted by infinite dimensional ODEs due to development of (3) into systems of ODEs. This 

substitution requires a brief comment. Namely, in practice instead of infinite dimensional systems, 

the truncated systems are used. One may expect that an increase of equations number yields a certain 

threshold number, and further increase of equations does not bring anything qualitatively and 

quantitavely new in the obtained results. A key role during this procedure plays the attractor 

dimension. However, even if an attractor dimension is bounded, an important role play effects 

associated through truncation of the system (8). Note that in a case of improper choice of the basis 

used for transformation into ODEs, an associated truncated system may exhibit unreal attractors. The 

described so far phenomenon occurred in two dimensional equations modeling heat fluid convection. 

The Lorenz system [10], representing three modes approximation, exhibits chaotic dynamics. 

However, increase of modes number decreases chaos dimension. For sufficiently large modes number 

chaos is not exhibited at all. In reference [11] it is shown, that for large Prandtl numbersδ , the 

considered two- dimensional Boussinesque convection is characterized by critical values of the 

Rayleigh number Ra associated with one- and two-dimensional vibration processes, whereas further 

increase of Ra yields a one frequency periodic convection. Owing to the described so far examples, it 

is recommended to include a sufficient large number of modes either through the Bubnov-Galerkin or 

Ritz methods. 

 In what follows an influence of modes number in the Ritz procedure on example of spherical 

and conical shells vibrations with non-constant thickness and movably supported is studied. The input 

loads is uniformly distributed on the shell surface of the sinusoidal form 

  tqq pωsin0= . (9) 

 Our numerical simulations show that a computational convergence essentially depends on the 

deflection arrow  and on the shells geometry. In the case of a constant thickness for , and for 

a sphere, as well as for a cone beginning from , the convergence occurs. In the case of the 

sphere for 

k 2≤k

2≥n

32 ≤< k  the obtained series is convergent beginning from , whereas for  the 

convergence begins from . In the case of the cone for 

2≥n 3>k

4≥n 32 ≤< k  , the convergence occurs for 

, whereas for  it begins for . 4≥n 3>k 5≥n

 In this report only results associated with 6=n  are illustrated and discussed. 



4. Spherical shells with constant and non-constant thickness 

 Let us analyze spherical shallow shells with constant and non-constant 

thickness: )1(0 ρchh += , movably supported on their edges, where a shell’s meridian form is 

initiated by the deflection w Recall that the load is defined through (9), and the initial 

conditions are zero. 

)1( 2
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 A picture of transition to chaos differs essentially owing to increase of the arrow deflection k. 

Analysis of the dependence { }pq ω,0  versus k shows, that the plate (k=0) { }pq ω,0  is characterized 

only by harmonic vibrations with constraints on deflection ( ) 50 ≤w  and 1000 ≤q . Zones of chaos 

and bifurcations begin to increase with increase of k. For k = 1 there exist only two zones with a 

margin inclusion of chaotic zones, whereas increase of  yields one more bifurcation zone. 5.1≥k

  

(a) (b) 

Fig. 1. Charts of regular and chaotic motions and their bifurcations in the parameters { }pq ω,0  

plane for spherical shells for 5=k  with constant (а) and non-constant (b) thickness 

 In Fig. 1 charts associated with control parameters { }pq ω,0  for constant (left) and non-constant 

(right) thicknesses are reported for 1.0=c . Change of the shell thickness essentially influences the 

system state. Analysis of the obtained results shown in Fig. 1 allows for conclusion that shells with 

non-constant thickness have smaller domain of chaotic vibrations. In words, both regular and chaotic 

vibration of a shell can be controlled through a change of shell cross section. 

 A scenario from regular to chaotic state of a shell with non-constant thickness is similar to that 

of constant thickness. In both cases a sharp deflection increase is observed of a doubled shell’s 

thickness value during a transition from one to another state. The observed process can be here 

interpreted as a dynamical stability loss of spherical shells subject to sinusoidal load. 



 Although a turbulence phenomenon is known since a hundred of years, its mathematical model 

has been proposed by Landau [12]. It is worth noticing that no one of the existing hypotheses used so 

far to analyze deterministic vibrations of spherical shells with arbitrary boundary conditions and with 

an arbitrary deflection arrow can be satisfactorily applied to govern a transition to chaos. Note that 

the applied control parameters play an essential role during a transition of the considered mechanical 

system into chaos while changing an amplitude and frequency of external input. 

Note that while investigating of chaotic vibrations the typical classical diagrams are not constructed 

here, and a bifurcation scale is constructed depended on { }pq ω,0  for a fixed value of pω . This 

approach is motivated by an earlier observation that in the chart { }pq ω,0  various transitions to chaos 

are possible. The new scenario from regular to chaotic dynamics occurred in spherical and conical 

shells for both constant and non-constant thickness are reported (Table 1), where also a signal , 

phase portrait, power spectrum and Poincaré maps are included. Increase of the parameter  yields 

a period doubling bifurcation, i.e. a second frequency occurs which is linearly independent from the 

first one. 
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Table 1 

q0 w(t) Phase portrait Power spectrum Poincaré map 
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5. Investigation of chaotic vibrations 

 Let us compare analysis of spherical and conical shells applying movable clamping and zero 

values of initial conditions. Analysis of the dependence { }pq ω,0   versus deflection arrow k shows, 

that an influence of shell geometry on the vibration character increases with increase of k. For 

example, for the plate (k=0) { }pq ω,0  only harmonic vibrations occur for ( ) 50 ≤w  and . 

For k=1 in both a cone and a sphere, a small chaotic zone appears between frequencies 

1000 ≤q

5=pω  

and 6=pω . For k = 1.5 in both charts bifurcation zones appear. For k = 2 zones of multiple 

frequencies are added. For , an influence of the shell’s geometry yields sufficient differences in 

the charts for the sphere and the cone. In Figure 2 the charts of the control parameters 

3≥k

{ }pq ω,0  of the 

cone (left) and the sphere for , where the geometry influence is clearly expressed, are 

shown. 

5 2; ;5.1=k

  
а) cone, k = 1.5 b) sphere, k = 1.5 



  
c) cone, k = 2 d) sphere, k = 2 

 

e) cone, k = 5 f) sphere, k = 5 

Fig.2. Charts of the control parameters { }pq ω,0  of conical and spherical shells 

 Besides of the mentioned route to chaos, the parameters plane { }pq ω,0  of conical and spherical 

shells with the arrow deflection , there are subspaces where a route to chaos follows the 

Feigenbaum scenario [13]. However, in the case of spherical shells the Feigenbaum constant can not 

be estimated, since only three bifurcations have been observed. Note that in the case of conical and 

spherical shells with  the Feigenbaum scenario is not detected. 

4≥k

3≤k

 For the conical shell with the deflection arrow 5=k  the following series is obtained 
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 Theoretical value, obtained for the function ( )21 cxf −=  [13, Table1.25] reads: 

. A difference between theoretical and numerical experiments for conical shells is of 

amount of 0.018%. The values of the series  and the series d  are reported in Table 2. 

66916224.4=d
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Table 2 

n 1 2 3 4 5 
Q0,n 9.605846 11.098 11.77755 11.9204 11.951 
dn  2.19579722 4.75708785 4.66830065  

 

6. Conclusions 

 In this work the method to study chaotic vibrations of shallow spherical and conical shells with 

respect to the series of parameters like a deflection arrow, amplitude and frequency of excitation, 

shell thickness and its parameters is proposed. The various charts of the shells vibrations depended on 

the control parameters { }pq ω,0  are reported. First, an influence of modes number on the vibration 

character of spherical shells in bifurcation and chaotic zones is studied. A threshold occurrence, when 

either chaos or so called ‘multi-modes turbulence’ appears, is illustrated and discussed. Various 

dynamical phenomena of spherical shells versus deflection arrow are reported. 
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