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ITERATION IMPROVEMENT PROCEDURE OF A CONTACT ZONE
MAGNITUDE VIBRATIONS OF TWO-LAYERED UNCOUPLED PLATES

V. A. Krysko, J. Awrejeewicz and Q. Ovsiannikova

Abstract. A new iteration procedure for dynamical problems, where in cach
time step a contacting plates’ zone is improved, is proposed, Therefore, a zone
and magnitude of a contact load is also improved. Investigations of boundary
conditions influence on externally driven vibrations of uncoupled two-layer
plates, where for each of layers the Kirchhoff hypothesis holds, are carried
out.

1. Introduction

Uncoupled multi-layer plates create a complex dynamical structure, where depending on input
parameters, and initial and boundary conditions, various vibration types appear,

In spite of un-doubtable achicvements in static and dynamical problems of non-linear theory of
plates, the problems of contacts exhibited by multi-layer plates subject to both longitudinal and

transversal time-changeable loads are less investigated.

2. Mathematical models

In this work, a model of two-layer construction, composed of thin elastic rectangular plates is

studied [1]. The mean surface of a upper plate lies in planez = 0, whereas the mean surface of the
lower one lies in plane z = %(é‘l +8,) + iy, where: & - distance between plates, &),8, - tﬁicknesscs

of upper and lower plates, correspondingly. The plates are contacting with each other through

external surfaces, projected into a corresponding mean surface, within a general Winkler's hypothesis
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[9]. Note that each of plates is embedded in 3D space in R? with atached coordinates. Namely,
senses of the axes Ox and Oy go into direction of mean surface of upper plate, whereas axis Oz goes
into Earth centre. In the given coordinates, the three dimensional plates spaces £} read

Q, ={z,y,zix,y) € [D,a]x[D.b],—% £z SEZL ,

Qg = (., 25 5) €[0,0)x[0.6L 28, Gy +hy < 2.5 S+ k),

where the space [0,a]x[0,b] defines rccréng't_lla.r plate shape; D;,D; are cylindrical plates stiffness,

The govemning equations are
D5, 7t 0¥ ) = 0]+ g W) o
Dyt (5,3, +k Syl 1YV 3,0) =43+ b+ )Gs, .,
where the function
= Zilesignin -wy k)] @

¥(x,y) plays a role of shells’ contact space {}* indicator. Notice that if the injtial platss location
{clearance function) and the loads do not lead to a contact between plates during their deformations,
then ¥ =0 and cach of the plates vibrates independently. Otherwise, the goveming equations are

coupled.
The system (1} is associated with one of the following boundary conditions [3] on the boundary

Ay

w,-I‘n‘ =-‘-;—:’;;|m' =0, )
8w

“a, =5, =0, )
(i=12)

Owing to the D’Alembert principle, gf include both inertial and damping forces acting on the

i-th plate of the form
v
g (x,0.0) = g(x, 0.1 e a

The system (1) is of high order with respect to time and spatial coordinates (x, y). The

computational process is as follows: in each time step the following values are accounted from a
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- -
previous step wil,, | = wi(x.¥ubk1); wils_, = wilx, ¥.1x1) , and in order to improve a contact zone
the foltowing iteration procedure for time ¢, is applied

ki
D,azw,‘""") +h—E‘Pwl('”+n =q" +hE‘~P(w§"') +hy),
1 /| :

)
D-_,Azwg“”') +—k£‘i’w§m+l) = q;n +E,*,(wl(m) +hl ).

h Ay
First PDEs (1) are reduced to the Cauchy problem through the second order method 'of firite
difference, a then the problem is solved using fourth order Runge-Kutta mcthod. In each time step the

iteration Gauss procedure (5) is carried out, and the system order is reduced twice, what is important

.
owing to computation time. Finishing the iteration procedure (5), the obtained values of w; and wy

scrve as an initial condition for a next step of the Runge-Kutta method. The mentioned procedure
allows for a contact zone improvement. Owing to the Runge principle, it has been found that the

optimal step with respect to spatial coordinates is defined through a partition of space (I; into

15x15 parts, whereas time step is equal toAr=1-10". In what follows vibrations of two-layer

plates with various boundary conditions along their contours are studied. The following four variants

of the boundary conditions are accounted:

(i) Two plates are clamped along their contours (boundary conditions (3));

(if} Two plates are ball-type supported (boundary conditions (4));

(iiiy Upper plate is clamped along its contour (boundary conditions (3)), whereas lower is ball-type
supported along its contour (boundary eonditions (4));

(iv) Upper plate is ball-type supported along its contour (boundary conditions (4)), whereas lower
one is clamped (boundary conditions (3)).

3. Two plates are clamped along their contours (houndary condl.tions 3
Assume that two plates have same thickness {§) = §; =& ), and the frequency of excitation

ay = wp =9.973, where @y is the frequency of a linear vibration of one-layer plate, & = &5 =0 ,6.
The clearance between plates is h_, =%—= 0,007 (h—l - non-dimensional parameter). Both plites are

subject to sinuseidal load of the form g; = {; sin @ pt . Bondary conditions (3} are applied, and the

inigal conditions read;,

L]
Wi1cp =#1]0 = 0.
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Recall that in each time step the iteration procedure {5) is applied. In Table 1, parts of time

histories w;(0,5;0,5;¢), 26s¢532, phase portraits -:v; (w;), and power spectrum  s(w) are
presented only for lower plate, since the vibrations of lower plate are mirror refiection of the upper
plate. Furthermore, the results are only given for the plate centre, since vibrations of othe;' points are
synchronized with those of the centre. During plates coﬁtact, there exist time instant where vibrations

process is un-stationary one, then after a long time it achieves a stationary state. For g, =—g, < 0.5,

the plates do not-contact with each other, and harmonic vibrations occur.
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w(0,5:0,5)=B for g =g, =28; 56 contact
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This observation is confirmed through the following characteristics: in power spectrumn only one
frequency is visible, and an ellipse occurs in the phase portrait. However, for q) =—¢; = 2 (a contact
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between plates occurred) a picture is changed: vibrations are not longer harmonic, and the phase
portrait is of more complexity, Increasing the transversal load a Hopf bifurcation occurs with a period

tripling ( g; = —g; = 11} (see [4]). Further an interlace of vibrations on the excitation frequency and

on the frequencies of period tripling and number eight is cbserved.

4. Boundary conditions (4)

Consider two-layer plate type construction with the same parameters as in the previously

analyzed case, but with boundary conditions (4). Similar like in the previous case, for ) =—g, =0,5
harmonic vibrations occur. However, now bifurcations appear already for gy =-¢;=1.5.
Increasing g; , a picture of plates bending becomes more complicated. For g, =-g, =3 period
tripling occurs, then a transition to chaos takes place { g, =—¢; =4). This is clearly expressed in
both phase portrait and power spectrum. For g, = —g, = 5 again Hopf bifurcation appears, then its
collapse takes place ( g; = —g, = 6). The scenario is composed of interlace of Hopf bifurcations and a

transition into harmonic vibrations.

Table 2.
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w(0,5;0,5)=C for ¢ =—q3 =4, 21 contact

points
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w(0,5,0,5)=D for q, =-gq; =6; 56 contact points

5, Vibrations associated with different boundary conditions

In Table 3 same characteristics as in Table 2 are reportcd, but now the upper layer is ball-type
supported along the contour (boundary conditions (4)), whereas the lower is clamped (boundary

conditions (3)).

For q, = —g, =0.5, vibrations of two plates are harmonic, and each of plates vibrates with its
own frequeney. For g, = —g3 = L.5, when a contact between plates occurred, in upper plate power

spectrum two Hopf bifurcations are remarkable, whereas period seven is associated with lower plate

(see the power spectrum). For gy =~¢; =3, in the power speetrum of lower plate also two Hopf

bifurcations appear, and two plates begin to vibrate with one frequency.

Table 3.
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In Table 4 the same characteristics as in Table 2 are reported, but for different boundary

conditions. Namely, upper plate is clamped through its contour (boundary conditions (3)), whereas
the lower is supported through the boundary conditions (4).

Table 4.
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w(0,5;0,5) w s
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For g, =-¢; =0.5 both plates vibrations are harmonic. Forg, =~¢, =6 vibrations of both

plates are synchronized with one frequency. Then two Hopf bifurcations follow.

6. Conclusions

The carried out analysis exhibits a complex vibrations of two-layer system of plates: series of
Hopf bifurcations occur, where period three, five and seven Hopf bifurcations occor. The detected
bifurcations in our complex system have been theoretically predicted by A. N. Sharkovskiy while
analyzing the logistic curves. It should be emphasized that contacting load depends essentially on the
number of contacting points.

593



Some new dynamical phenomena have been detected. For example, if the upper plate is bali-
type supported, and the lower one is clamped along its contour, synchronization takes place. Namely,
both plates start to vibrate with the same fundamental frequency @ =1.6 (a ball frequency) earlier
then in the case of clamping and bali-type supports. After the occurred synchronization, further
increase of loading has not changed dynamics qualitatively,
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