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Abstract. Chaotic dynamics of a rotated penduium is predicted analytically
using the Melnikov's technique. It is shown, among others, that the one-
degree-of-freedom system can exhibit either two or four homoclinic orbits
and one or two Melnikov criteria can be applied, respectively. A formula of
system parameters has been derived in such way that all homochinic orbits are
destroyed.

1. Introduction

After occurrence of first reports of chaotic dynamics exhibited by simple oscillators, there
is still an attempt to detect chaotic orbits in possibly simple dynamical systems [1, 2, 4, 5, 7).
Howevet, chaotic behaviour presented in the mentioned references is mainly detected and analysed
through various numerical approaches. In contrary, our attention is focused on an analytical

estimation of chaotic thresholds in the system parameters space.

2. Melnikov’s Method

The dynamics of a one-degrec-of-freedom nonlinear oscillator can be governed by the

equation
4+ 5(x) = 6G(x5,1), m
where: x is the displacement, §(x) represents the nonlinear stiffness, G{x,5,) is the time T-

periodical function depending on the displacement and velocity, and £2 0 is the small parameter. Eq.
(1) can be written in the form of two first order differential equations

\:r = —S(x) + .s‘G(x, v,t),

@
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where v is the velocity. For £ =0 we get an unperturbed system of the following form

¥= —S(x), 3)

=

Let us suppose that the unperturbed system governed by Eq. (3) has an equilibrinm point py
at the origin of the phase plane. If the point pe is of the saddle type, then it is possible to find a
homoclinic orbit ¢y associated to that poiﬁt. In the case when G(x,»t) is T-periodic in time, the

perturbed (2) can be written as an autonomous one -

v=-5{x}+sG(x,v.7),
i=v, . 4
n=o,

where the frequency @=2x/T . The phase space of the gystem (4) for s=0 has the cycle structure
caused by 77 and the hyperbolic orbit. Therefore, we can define a Poincaré map £, :E% - 1%,
which transforms £% ={(x,v,7)(7=m €[0,7)} to itself and which has a saddle fixed point with &
homoclinic orbit on E™, comesponding 1o the phaic portrait of the system (4). For £>0 the
homoclinic orbit splits and it yields the stable W’(p,) and unstable #"(p,) manifolds oOf the

hyperbolic point p, lying near py, of the form

W (pe)={(en)ex®

w"(p,)={(x,v)ez’h| lim BC" = P,}.

N+

lim 'P:=P:}n
o

The projection (s} [6 3] on the nommal to the homoclinic orbit
40(‘—’0)‘—'(-‘0("‘0): Vo("’o)) of the distance d(s,) betwcen w*(p,) and W"(p,) can be

obtained as follows

d(t)=-¢ M (i) +0(sz) ,

(ot

where: |f|=v2+.S'1(x) and

M(toj= IVO(I)G[qD(l),!+!o]d!

is called the Melnikov function. For M(1,)=0 the stable W*(p, ) and unstable w"(p, ) menifolds of
* the hyperbolic point p, intersect, and when M (f) has simple zeros (additionally SM ('0 ) /é‘ro #0),
then by the Smale-Birkhoff homoclinic theorem, the power of the set of the intersection points equals
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to the power of the set of the integer numbers (i, ), and chaotic motions can appear,

Some systems can exhibit more than one homoclinic orbit..In this case there are mote than
one Melnikov functions. If we combine system parameters in such way that two or more Melnikov
functions disappear, then a point in a parameters space, where two or more homoclinic orbits are
destroyed, will be detected.

3. Analysed System

A forced rotated pendulum with small damping is shown in Fig. 1.

Fig. 1. Analysed system.

The analysed system is governed by the following second order differential equation
mi*g - mP o sinpcosg + mglsing = E(Acosm,r- D#Y,

and bence

éi--%-m’sin2¢+nﬁsin¢=£(roosqt—5¢), &)
where: oy =JEﬁ L= A/(ml’) . 5=D/(m!2), £- small parameter,
Eq. (5) is transformed into the following form

¥ =-,}a)z sin2p - oy sin¢+£(rcoant -8y),

=z
For =0 one gets the unperturbed system with the associated Hamiltenian

B (p,6) = et L st cos2p- o cos
w,w)~7 - cos29 - oy CoSp-

There are two main critical points of the system: @y; =0 and gy =17 . For [af>ay>0 two other

ones occur

ar

2
Ppaa=t uccos[ﬂ.‘.-] , |Poa,4| <xf2.
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Observe that the point g, is always a hyperbolic saddle. The g, one changes its type depending of
the parameters value, For |a] <y it is a centre, whereas for |o>a, we have™a hyperbolic saddle
critical point, The additional points ¢, are centres, when they exist.

A homoclinic orbit of the critical point @, satisfies the equation

—-—:Jzaﬁ(cow+l)+ m’(l cos p) 6
Integrating Eq. (6) one gets

rm(r):sgnt-arwos( 4(‘”1“1%)

(2074 mg(l oo 207 m;:])
4%(a12+a)0) [Jaﬁﬂn@]
228 +aﬁ(l+cosh(2g Jor? +a:.?tD

The other homoclinic orbit associated to the critical peint gy, takes the form

1

= Y

)=

———tJZaﬁ(ooscp 1)+ (l —cos p) oA > e - @®)

Integrating Eq. (8) one gets

.

S(mz— z)z
—
dor =4 (aﬁ—Z) +4_aJJz i le>a.b ©

od-o)or -}z

af -z)2 +40%z

oo (1) = tarccos| 1-

)=+

where: z= a2e?¥™ %",
. Summing up, there are exist two or four homoclinic orbits. A mumber of homoclinic

solutions depends on the system pammetefs. For |m| <oy the amlysed system has two ones described
by Eq. (7), and for |a{>q, there are tour homoclinic orbits - see Eq. (9). The homoclinic orbits are

shown in Fig. 2.
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Fig. 2. Homoclinic orbits for oy, =2, »=1 {to the left) and for ey, =1, w=2 {to the right).

4. Melnikov’s fanctions

The Melnikov’s function along homoclinic orbit g4, yields
Mat)= J-iﬁbz (1){rcosan (1+10) - S (7))t -
Substituting (7) into (10) one gets
My(n)=h-1,
where:
@ 1:0311["(1!2 + nﬁt]wsq (t+10)
1 = dyay| 0 + 0 dt
1= 4y oy T2
o2a? +a;§[l+oosh[ o +n)ot))

I =166m§(a)2 N aﬁ)z ‘]- ooml( o + ﬂﬁr]

5 dt
*(2@2 +aﬁ(] +cos_h( ® + '”OI‘DJ

Expression f; yields

where:

1”=—4m(a:2+m§)sinqroj at s
-¢2a:2+m§(l+cosh(2 a)2+m§1)]

Iz = 47%(0)2 + ﬂﬁ)cosa_q.!o j

Note that the integrand in [}, is an odd function, hence’
Iy =0.

Using (12) one obtains

(10

| {an

(2
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I =y Ascosary, (13)
where the constant 4,, reads
t cosh (\I o + aﬁ:)oos oyt
5,24»2 +a€[l+cosh(21/w2+ aﬁ:))

dt .

g =8y (o +af)

Integrating expression 7, one gets

l,-zaﬂi —, afa? + f sih{ 2JoP + oy | ©
@ (J_w ﬂJ} 2t +af 1+unsh(2\[m3+-a3!) }_@

and
2 .
=45 ﬂarctgh s +\}w2 + aﬁ . (14)
@ o® +af
Substituting (13) and (14) into (11) we obtain

Ma(to) = A sinan, ‘M[%m[ﬁ]‘wwz 'Hll%]

Then, the first Melnikov criterion is given by the formula

Ir42|>46[§-mtgh[70%‘§r]+1/ef +q]2] (15)

The next Melnikov’s ﬁmetion niong homoclinic orbit gy, yields

Mi(to)= [oun(0)(rcosan(s +1o) - (1) at- a6
Substituting (9} into (16) we obtain
Mo(r)=h-14s an
where:
Y 2 _
I =47(m2 —mé) I-b%mq (1+50),
) —z +40z
2 |0J| >ay,
mb —z) z

*[(aﬁ —z) +4mzz]
and z=q§e’4"’”"’5' . Expression 7, yields
13 =13| +I32, ’ (18)
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where:

o) -od)E

Iy =ycosayly I cosantds »

(aﬁ - z)2 +4otz

N

I3z =—ysinarty 3 sin aytdt -
2 2

(ﬂb —z) +4a'z
Observe that the integrand of 7, is an odd function, and therefore

Iy =0.
Using (18) one obtzins

I =—y Ay sinay, (19)
where the constant 4;, reads
“ Aoy - z)[o
Ap = I (% ]( sumq:d’t-

(mo z +4mzz

Introducing the variable change z = q}ez\“’"“e'  the expression [, takes the form

1% (a)g—z)zdz

1,=36{0* - )’ . o
-l[(mg-,) 4@)

Its integration yields

a

Iy=

(2o + (20 -a8) 20 —af 41
Yo -ad | (af-2] +aae 'Ja?‘a‘—)aém[wf— ]

Iy =-2msm(o? - aﬁ')_}. (20)
Substituting (19) and (20) into (17), ons gets
Mi{t0)= 7 sy cos arty + 2y (0 —m&)*
Then, the second Melnikov criterion is given by the formula
I ] > 2 0 - ) 3. @

The Eq. (15) and Eq. (21) a:e shown in Fig. 3 in the (y,0) plane for sy =2, @ =1, §=0,2. For
@ >2, there exist two curves correspondmg to both Melmkov functions af(r,} and M,(r,) and they
cross each other at the point (;v 3).
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Fig. 3. Chaotic thresholds in the (y,») plane (ay =2, &y =1, 6=0.2).

Eq. (15) and Eq. (21) ar¢ shown in Fig. 4 in the (r,mo) plane for @=4, o =1, §=0,2. For a <4,
there exist two curves corresponding to both Melnikov functions af, (1) and M;(r,), and they cross
each other at the point (7,a,) .

10

Fig. 4. Chaotic thresholds in the (y,a) plane (=4, o =1, §=0,2).

Transforming Eq. (15) and Eq. (21) one gets

The condition of crossing curves corresponding to Melnikov functions af, {n) and af, (o) is given by
the formula

deelgiz) PR e

5. Conclusions
The classical Meinikov’s approach is applled m predict chaotic behaviour of the rotated
pendulum with small damping. It is illustrated that the sysr.cm can posses either two {led < &Jn) or four
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(]a,]> ab) homoclinic orbits, Two Melnikov’s criteria of chaos are eomputed and associated chaotic

thresholds in the (y,0) 2nd(y,m,) parameter planes are reported.
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