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Abstract. We consider two coupled oscillators with negative Duffing type stiff-
ness which are self (due to friction) and externally (harmonically) excited.
The fundamental solutions of the homoclinic orbit are constructed. Then, the
Melnikov-Gruendler approach is used to define the Melnikov's function includ-
ing smooth and stick-slip chaotic behaviour.

1. Introduction

The presented work has at least a few motivations. First, there exist a vast research
devoted to analysis of low and high dimensional sysfem with friction. Some fundamental
problems of non-smooth dynamical systems with friction are addressed for example, in refer-
ences [1,2]. Beginning from the pioneering work of Melnikov [9], the Melnikov-like approaches
spread into different branches of science. We briefly address the Melnikov-like techniques
to predict the onset of chaos in systems governed by ODEs or maps. A splitting of separa-
trices for high-frequency perturbations of a planar Hamiltonian system using the Melnikov
technique is also examined (see [6]). Mainly Gruendler’s work [7] served for us as the basic
reference to start with a construction of a homoclinic orbit in our 40 mechanical system
perturbed by friction and harmoric excitation, and then to derive the associated Melnikov's
function. It is worth noticing that an important opened problem of the Melnikov’s approach
relies on its extension into analysis of higher order dynamical systems. This problem seems
to be unsolved since it s difficult to establish a priori a homoclinic orbit associated with a
highly dimensional system considered. _

It ig needless to say that a prediction of chaos in an analytical way in non-smooth

objects modelled as systems in R* plays a crucial role for both theoretical and applicable
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reasons. A key role of research carried out in this direction plays the paper by Awtejcewicz
and Holicke [3], where a chaotic threshold for both smooth and stick-slip‘chaotic bebaviour
in one degree-of-freedom system with friction has been obtained using directly the Mel-
nikov’s technique. On the other hand, it was impossible to extend directly the original
Melnikov’s method devoted to analysis of an analytic system in R?. Therefore, we have
applied the Gruendler extension of the Melnikov's method to T, which is further referred
as the Melnikov-Gruendler approach. However, in the cited Gruendler’s work [7] again an
emphasis of C* systems is given. In contrary, in our research we extend the results obtained
earlier (see [3]) to R®. Although we do not give a rigorous definitions and proofs of a C™
vector field on R™, but we show the computations of related integrals yielding a being sought
chaotic threshold defined by the approproate Melnikov's function.

2. The analysed system
The analysed mechanical object consists of two stiff bodies with the masses m coupled
via linear and nonlinear springs in the way shown in Figure 1.

Tcos(wt)
T = T {7y — w) zg Ty (22 — w)

r _
OO

Fig. 1. Two degrees-of-freedom system with friction

Note that when .the system is autonomous, i.e. I'= 0, the self-excited oscillations appear,
which are generated by frictional characteristics. The latter ones possess a decreasing part
versus a relative velocity between both bodies and the tape moving with a constant velocity
w. Although this problem belongs to classical ones and has been studied by vast number
of researchers, an attempt to formulate threshold for chaos occurence in the analytical way
failed. In what follows we show how to solve this problem using the Melnikov technique
applied to our t_:l.iscontinuous system. It is also recommended to be famitiar with the reference
[3], where a similar like approach has been applied to predict chaos in a similar like gystem,
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but with one degree-of-freedom. Dynamics of our system is governed by the following ODEs:

1 =p/m
P =ke1 — k2 + ko {21 — 23) — ko (21 — 22)? + &1 cos (wit) — &2 T (1 /m — w) a
iz =pmfm _
P2 = k32 — k2l — ko (%1 — z2) + ko (m1 - 22)° = &2 {p2/m — w)
where T, (pi/m — w) = Tio sga (pe/m — w) — Bus (pi/m = w) + Biz (ps/m — w)® and w s the
tape velocity, whereas Byy, Byz, B2, B2z, Tio, Too are the friction coefficients. Introducing

the following scaling

[x Kk { & k [ *
triyf—, 3=21\/;. v=EpyoEr VEBRYL veERY 5 @

and the following relations ky = £k, Ko = £k where £ > 0. The analysed ODEs are cast

in the nondjménsional form

E u 7 0

u _|*= -2+ fe(z,4) + " cos (W't) — 22T} (u— w') , @
i v 0

] =1 - fe(z,y) ~esT3 (v —w)

where f¢ (z,9) = €2 — 1) ~E(z - v)* '

3. Melnikov-Gruendler's method
The method applied in the paper is due to Gruendler [?7]. Although the theory is a
generalization to a non-Hamiltonian case we apply it to a Hamiltonian one. Here we consider

a mechanical system governed by the equation:
#(t)=f(z @) +h(z(t}),1,0), 4

where f : R* — R* is 8 Hamiltonian vector field and ki : R* x R x B C R* < R' is periodic
in ¢ with freqﬁency w and satisfies h (z (£),£,0) = 0. For € = 0 we obtain the unperturbed
system. Let the unperturhed system possess a homoclinic orhit -y (£} to a hyperbolic point
at the origin.

The variational equation along -y (¢} is the followine:

V(&) =Df(r Dy (). ()
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‘We seek a fundamental solution {¢(‘) 8), v (1), 9@ (), ¥ (t)} to the equation (5) pos-
sessing some special properties. The properties are the following:
1 B =51
2. The initial vectors ¢} (0) span a vector space
3. Each #' (t) has the exponential behaviour as t — +c0. Namely:
¢ @) ~thierty®  astertos. kK EN
$ 0 (§) ~ thetd et 5 ast 4 —o0. ki €N
where o is a permutation on four symbols and { A1, Az, Az, ,\4} are the eigenvalues of
Dy (0).
4. The signs of R(A:) and R (A,(;)) in the exponential bekaviour has to be such that:

O R() >0 ey _ R(A)>0 ©
R(A@m) >0 R{Am) <0

PR LS EL I LGRS "
R{dm) <0 R{Ae) >0

t—too

Next we define an index set [ by £ € I if and only if ¥ (t) =——=3 0. Moreover we form

the functions:
D (z) = det {y (1), 4 (6), 91 (6), 91 (1) & B V600D ®)

Since f is a Hamiltonian vector field we obtain Vf = 0. Thus the function D (#) reduces
to simpler form D (t) = det {¢(1) ), %® @, 9@ ), p® (t)} Let K;; (t,t0)* denote the
-result of replacing ¢ (¢} in D (t) by 8—"(3-(2-;:_—”9-'9’-. We define the function:

Mij (o) = — f - Kij(tto)de, i€l (9)

The function above measures the separation of stable and unstable manifolds. The Mel-

nikov’ function is defined as follows:

4
M(tg) = ZM{,‘ (to) €, 1€ I (10)

=1

1t is easy to show that 4 (£) satisfies the equation (5)
*This function represents the projection onto the direction of ¥® (2) of the &; of the h

evaluated along -y (t).
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4. Linearization along homoclinic orbit and fundamental solutions

Let us denote by +y () the homoclinic orbit of the point {0,0,0,0}. It has (in our case)

the following form

q(t)
| i® _ [21+20) '
1(t) = ol where g(t) = -mf—sech(t-\/1+2§). (11)
—g(t)

The linearized system of the unperturbed equations (3) in vicinity of the homoclinic orbit
~ (£} reads

. 0 1 0 0
b=y, whee F(=| TET30HOCEO 0 —E+12%P (1) 0
0 a 0 1
~£ +12¢¢° (t) 0 1+£-3(14+46q° @) ©

(12)

Next we obtain the following equations

d1= (1+€-3(1+48) 0" () o +£(12¢° (1) ~ 1) ¥s

A (13)
Yo = (1+E-3(1+46) @ 1) ¥ +£ (1207 () - 1) tn
A combination of the equations (17) yields
d1=(1+20) (1 - 65ech’ (VITE)) b h=tri—ts {14)

It is easy to see that ¥* (f) = 4 (t) satisfies the above equation. In order to find another
solution, the following substitution is applied: g(t) = r (t) g (). Since ¢ (t) i= a solution to
{19) one gets

PG4+ 27§ =0 (15)
Integrating of (20) and owing to the obtained resulis, the solution reads

S (8) = (i) = Gclt - %Cl ctgh (£) + %cl sinh (2t) + cg) ity (16)

The above solution possesses the following asymptotics ¢1 (£) “=F2% ¢=*VTF%_ Next, sum-

ming up equations {17) we obtain

Br=h60% h6O=1-67 Rek? (WITE), de=tditds (D)
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Suppose that y, (¢) is a solution of the above equation then yz () = 1 (—t) is also the
solution because A (f,£) is an even function with respect to t. Furthermort, it can be shown
that g1 (£) 32 (2) — g (¢} w2 (8) = S2(E), where Q (£) is a time-independent function.

The fundamental solutions of the above equations are the following:

n T v g
n ri+rg n d
¥ (1) = ¢ (1) = , vWar= "1 oCe=|" | s
n -r¢ ¥ —¢
" —fi-ri) ¥ ~4
5. Computing the Mehikov-Gruendler function.
In our case, a perturbation term associated with (3) reads
T
hit,e)= (0, a1l cos (w't) — £aT1 (u — w'), 0, €373 (v — w')) . (19)
Therefore, one ge.i:s3
0 0
Bh(y(t),t +1t0,0) _ | ['coslw' {t+2a)) { Bh(y(t),t+1t0,0) _ | -Ti{d(t)—v')
851 1] ' 3&:3 - 1] !
’ 0 0
| ' (20)
0 0
Dh(v(t),t+ to,0) 0 Oh(y{t),t+10,0) 0
—_a o = T = . (21)
ey 0 Ocq 0
T2 (¢(t) - u'}) 0

t—+oo

Observe that only K3 (t, o) should be found, since @ (¢) £2£% oo, First K2 is found

n 0 2 g
n [Meos{w' (t+¢ ! i
K (tto) =det |7 T C Wit+t)) o 4]
. 0 n —4 (22)
pi1! 0 B g

= 2" cos {w' (¢ + o)) (y1yyz — d1g2) =.2n (&)Mgcos (' (¢ + &)
Second, K:: and Kn are found
K (t,t0) = —2Q(6) T3 (¢ —w'), Kas(t,t0) = ~20(£) ¢T3 (¢ — v') (23)

3For more details see section 3
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According to (13) we obtain

Mz (to) = —2/2T'Q2 &) —— \/ﬁ-_ (2‘;%:_2.) sin (u'to) (24)

Mg, (to)-—?Q(f)f T'(q w)dt= 29(5)'1";0‘/ gagn (g — w')dt

—29(-5)an°°q(q w)dt+m(.s)m,j (a-w')dt

(25)
_8 1+2¢ (1+26)° -
= Q(E)B'l11+85 T+ %+ 2 ﬂ(f)B‘u 8E),\/1+2«£
+80 () Blyw "iiﬁ“m +2Q(E)T{o‘/mqsgu(q w') dt
Let us consider the last integral
f_mcjsgn (g-w')dt= %:—g-\/l+2£f_-w&sgn (§—w)dt, (26)
where § = —v/Zsech (t) tgh (£) and &' = w’ {I5E. Assume first that w' > 1/v/Z, then
fm fogn (§- )t =0 (27

Assume now that v < 1/v/2, then

/_'” .isgn(a_‘;,a)dg_f_“ édt+/!hédt—f‘h§¢#=2\/5(sech(tg)—sech(t1)) (28)

where sech{t;} = /1 - 1y/1-20", sech(t) = {/}+ 4yt — 20", Substituting the

obtained result we find

1+8 2 » [, 40+2)°

+Q O TiovE (5 - i ) (sech 1) — soch (1)

where @ (z) is Heaviside’s function. In the similar way we obtain fanction Mag (£o). Finally,
we find Melnikov-Gruendler function

. 3/
M) =~V s (-2 i () — {20 (810 + B0)
(1 +2)* PRLES 5, |
+4 K B+ B) (" + Sy ) (30
+2v2 (T} + T30} (l“'—"“;:—f% 9 (% - “-") (sech (f2) — sech (t1))
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6. Concluding remarks

In this paper an important problem related to stick-slip chaos prediction is successfully
solved. It possesses a challenging impact on analysis of all mechanical systems with friction,
since many of them can he modglled by two degrees-of-freedom objects [4]. -

Motivated mainly by two papers [3,7], the homoclinic orbit is defined analytically, and
then the Melnikov-Grunedler method is applied. The Melnikov's integrals are computed for
both qua]itatively'di_fferent casés ie. for regular and discontinons onset of chaos. It is worth
noticing that for £ = 0 Melnikov-Gruendler function reduces to the one-dimensional case [3t.
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