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Abstract. The solution of a contact thermoelastic problem on the interaction of
inertial, bodies involving both friction and heating is presented. It is assumed
that the friction coefficient depends on the relative velocity between the
contacting bodies. A stability of the stationary solution is studied. A com-
putation of contact parameters during heating of the bodies is performed. The
possibility of the existence of frictional auto-vibrations is shown.

1. Introduction

There are many examples in a literature focused on analysis of antonomous systems exhibiting
regular non-linear self-excited vibrations [1-4, 6-8]. Vibrations of the mechanical system modé]ling
woodpecker behaviour have been analysed in [8] and also studied in the monograph [3]. On the other
hand, vibrations of the so-called “Oledzki’s slider” have been studied first in the reference [6). Note
that two mentioned modeis are associated with “stick-slip” vibration bebaviour.

In spite of simplicity of the introduced models, an important information is obtained. Namely,
it is shown that the static self-braking cinematic pairs can initiate movement, when vibration appears.

Consider now our new proposed model, which does not have any elastic part, but which can
exhibit seif-excited stick-slip vibrations (Figure 1). For simplicity; it will be further referred as the
“frog-slider” system.
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2. Mathematical description of the prohlem

Let us consider a one-dimensional model of the thermo-elastic contact of a body with a
surrounding medium. Assume, that this body is represented by a rectangular plate (.L‘;l xby x2L)
(Fig.1). The plate together with a “frog” has the mass M|, subject w the force F=F.A-(f) and
moves vertically along walls in direction z; of the rectangular co-ordinates Ox,y.z, . In the initial

instant the body is situated in the distance Z, and possesses the velocity Z,. The distance between

walls is always equal to initial plate thickness 2L . The plate moves with non-constant velocity Z().

Figure 1 The model of the problem

It is assumed that the heat transfer between the plate and the walls is idea! and the Newton
assumptions hold. In the initial instant the temperature is governed by the formula Tphr(t)
(A} 1, t— =), It causes a parallelepiped heat extension in the direction of Ox;, and the body
starts to contact with walls. In the result of this process a frictional contact on the parallelepiped sides
X =#L occurs. The simple frictional model is applied further, i.c. a friction force F, is a product
of a normal reaction force N(tf) and a friction coefficient It means, that Fy = f (Z)N() is the
friction force defining a resistance of two sliding bodies movement Here, contrary to the assumption
made in the reference [7], the kinematic friction coefficient f(Z) depends on the relative velocity of
the sliding bodies [2].

The friction force @uz(X,r) per unit contact surface X =—L, X =L generates a heat.

According to the Ling [5] assumptions, the friction forces work is transmitted into 2 heat energy.
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Note that the non-contacting plate surfaces are heating isclated and have the dimensions of
Lib <<1, Lfbj<<1, which stands in agreement with assumption of our one-dimensional
modelling.

in what follows the problem is reduced to determination of the mass plate centre displacement
Z(1), plate velocity Z(1), contact pressure P(f) =N/ bby = —0 (—L. 0} ==0 (L1} ; plate
temperature T;(X,{), and displacement U(X,?) in the X axis direction.

In the considered casc, the studied problem is governed by dynamics of the plate mass centre

mZ(1) = Fhe(f)- 2 f(ZXP(1), 1))

and equations of the heat stress theory for an isotropic bady

A P LAY -0, 2 ___ _
ax[ax U(x,1)-a, . T(X,t)] 0, 7 T(X ;) T(X 1), Xe(-LL), {2
with the attached mechanical
U{-L,t)=0, U{L,7)=0, 3
heat
#, G o (rarn- Tk )= 1) 20OPO), @
and initial
r{x0)=0, Xe{-L, L), Z(®=2Z,, Z(0)=0 5
conditions. Normal stresses occurred in plate are defined through
__B [tvau p
G’“(X”)_x—zv,[lwl ax ‘T‘] ©

In the above, the following notation is applied: E, — elasticity modulus, v, X, a, @;, oy
are Paisson’s ratio, thermal conductivity, thermal diffusivity, thermal expansion an heat transfer
coefficients, respectively; m =M, /bb, , whereas P(f)= N(1)/bb, denotes the contact pressure.

Integration of equation {2) with an account of (8) and the boundary conditions (4) yields the
contact pressure P(f) = =0 (—L,f) = =0 5 (L,1):

E,cr.,T,, 1

Py = L

J’m& GER Y]

Let us introduce the following similarity coefficients -
t,=fa, 18], v, =a/L [vs}, B, =TyEa,/(1-2v,) [N/m?], (8)

and the following non-dimensional parameters
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r=s T =g P 07l g= ©
=ﬁ3—1." Bi=£:'l—r, m',-z—’;- F(3) = f(vi). 10)

Applying an the Laplace ransformation, the following system of equations is obtained:
pl)= aij@(é.)G,(r ~E)E+ v:jm')z'(e_.)p(a)c‘,(r -B)dE, an
HW=almbe-F@p0], a2

which yields the non-dimensional pressure p(t) and velocity Z(t). The temperature is defined
through the following formula

8(x,7)= Bi [hr (8)Go(x, T - Ot +1 [F()i@)pE)Go(x t~B)E,  (13)
[} L]

where;

6,0, Glt, r)]- —- 2—{?3'—21"'—}— -uh (14)

o] l,l-[BI(BI + 1) + P‘ﬂ]
and p, are the roots of the following charecteristic equation: tgp,, = Bifp,, , m=12,....

A stationary solution to the problem reads:

1 1
Pu=1To 9x='l_—v- "=F(Vu) "7 s

where v,, is the solution of the non-linear equation

Flv,)=—0 ™m0 16
Cn) = T (16)

Graphical solution of equation {16) is presented in Figure 2 for various parameters my, and Bi.
Recall that for steel y =1.87. '

In this case the steel made parallelepiped plate (a, 410%™, ZIWI(m-'C"),

=03, a,-—59 10%m? /s, £, =19-10"Pa) with L=0.01m, 5, =5C, z*=2"=0 and with
non-constant friction coefficient is studied One gets 1+, =16955, v, =0.59-10"2 mfs,

P, =3.3-10" Pa. The function F(2)=f{v.z) is defined through the formula [2].
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Figure 2 Graphical solution of equation (16)
(solid curves: | — my=0.14, Bi=20;2-my=0.1, Bi=20;3- my=0.1, Bi=35;

4~ my=0.14, Bi=35; dashed curve corresponds to F(v,)).
In the fourth case (m,=0.14, Bi=5) we have one solution of the form: v’ =278,
p2 =07 =2.45 . It is unstable if the parameter &, is larger than its critical vatue (g, 2% ).

In order to confirm the given conclusions, numerical analysis s carried out for the fourth case

for Bi=5 (now g =~ E=586.5), and the computational results are shown in Figures 3 for a few
values of the parameter & =400; 586.5; 800, In Figure 3a, the dependence of non-dimensional

body velocity #{t) on the non-dimensional time t is shown.
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Fignre 3 Time history of non-dimensional body’s velocity {a) and friction force (b) for varicus
values of g, (curve 1: g =800 ; curve 2: g, =586.5 ; curve 3: g, =400).
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4, Conclusions

It this work the results devoted to a novel problem of the so called “frog-slider” mechanical

system exhibiting frictional thermoelastic contact of a moving body subject o both non-constant

friction coefficients are presented and discussed. It is worth noticing that in the case of non-constant

friction coefficient, the self-excited vibration can appear in bur system without an elastic part

(stiffness). The last phenomenon is caused by the body heating while accelerating, the friction

increase, and than the braking and cooling of the system. The characteristic changes of both

displacement (Figure 3) and velocity of the analysed system motivated us to use the expression:
“frog-slider” system.
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