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This report briefly describes the large project of investigations of the flat triple physical pendulum with
arbitrary situated barriers imposed on the position of the system. Some examples of dynamical behaviour
of the special case of the triple pendulum (three coupled identical rods with horizontal frictionless barrier)
are shown.

INTRODUCTION
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can be illustrated and analyzed using this simple system'®,

But 2 single degree-of-freedom models are only the first step to wnderstand a real behavieur of either
natural or engineering systems. Many physical objects are modeled by a few degrees of freedom. This is
well known in mechanics, but even in physics an attempt 1o .investigate coupled penduturns is recently
observed. For instance, in references’ both the theoretical and experimental (laboratory) investigations
have been carried out on two and three coupled pendulums.

On the other hand, it is well known that impact and friction accompanies almost all real behaviour, leading
10 non-smooth dynamics. The now-smooth dynamical systems are analyzed in both pure® and applied
sciences’. The non-classical bifurcations are analysed in systemns with dry friction® and in systems with
impacts™!!,

Our work matches all the mentioned research directions. The scope of the project contains modeling of a
flat triple physical pendulum with arbitrary situated barriers imposed on the position of the system (inchuding
impact and sliding motion modeling), mwnerical schemes for system somulation developing, stability
investigation of the orbit analysis methods in the case of nor-smooth system and its application m the
investigated system in order to investigate non-smooth dynamics, as well as, classical and non-classical
bifurcations'*"*. Another goal of cur research is focused on the applications of the investigated system (a
piston- connecting rod- crankshaft system modeling) ',

Here we only shortly present main governing equations and some examples of dynamical behaviour of the
special case of the triple pendulum: three identical coupled rods with horizontal frictionless barrier.

MODEL OF THE INVESTIGATED SYSTEM AND METHODS OF ITS ANALYSIS

Three joined stff physical pendulims coupled by viscous damping, moving on the plane are presented in

Fig. 1. The system position is defined by three angles w, (i=12,3), and each of the bodies is

hammonically excited by j;“.(i=l,2,3).1tisasstnﬂedﬂmtd'lenmcmtersofmeﬁnksﬁcmthcﬁn:

including the joints and one of the principal central inertia axes of each link (z; ) is perpendicular to a

movement pendutum plane. The set of possible configurations of the system is bounded by the arbitrarily
1



Fig. 1. The investigated triple penduham.

The system is govemned by the following set of differential equations together with the set of algebraic
inequalities representing stiff obstacles in their non-dimensional form
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Moreover, the state of activity of each obstacle is the part of the state of the system. Each obstacle can be
inactive, with instantaneous contzct with some links or with continuous contact with them. In the second
case an impact takes place. In the thind case the system just slides along the obstacle. The impact is



modeled by the use of generalized Newton's impact law based on the restifution coefficient mle’. The
sliding state is modeled by the introducing of the nommal forces fiom the obstacle to equations (1a).

The system response i3 obtained numerically by the Runge-Kuta imtegration of the differential equations
between each two successive discontinity points (where the activity of the obstacles changes: the impact
takes place or the time interval of sliding begins ar ends). These points are detected by halving imiegration
After the simulation of the systern, the next step was the stability analysis of the solution in the tevestigated
model, which in fact is piece-wise smooth (PWS) one. The classical methods and algerithms basing on the
linear perturbation equations are used with the modifications taking into account the perrbations jump in
the discontinuity points'®, The mumerical sofiware for Lyapunov exponents caloulation and periodic orbit
stability analysis (seeking for periodic orbits and their bifireations analysis) was developed.

For more detzils on modeling, relations between real and non-dimensional parameters, numerical
algorithms, etc., see works'>'”,

NUMERICAL EXAMPLES

For numerical examples the special case of the triple pendulum is chosen: three identical coupled rods, for
which we have: B, =4/7, By =1/7, p; =3/5, p, =1/5, v, =9/14, v, =3/14, v;, =3/14, The
first rod is hammonically forced: £,{2,?,4)=1,(r)=[gq, cos &,0,0]" and the horizontal barrier is imposed
on the posiion of the systen: A (?)=m-cosy, 20, h(?)=1-{cosy, +cosy,) 20,
k(7 )=11-(cosy, +cosiy, +cosy;) 20, where 71 is the non-dimensional parameter dewrmining the
bartier position and the restitution coefficient ¢ is associated with the barrier. Initial conditions x(0)=x,, for
examples are given by the use of the state vector X = (W, ¥, V¥, ,lﬁ,,m,r]r . The variables x,, and
¥ g are the non-dimensional coordinates of the third rod’s end (0, ) pesition.;

In Fig. 2 the periodic solution of period 9T (where T is the period of external forcing) with impacts is
presented. Fig. 3 shows the periodic solution with part of the trajectory lying on the surface of the barrier
(sliding state) and with the broken symmetry. Another example is shown in Fig, 4, where the post-transient
solution is situated on the 2D tori with wo incommensurate frequencies (quasi-periodic sohution with
Poincaré section in the form of continuous line), Fig. 5 presents the bifurcational diagram exhibiting grazing
bifurcation. If the vertical position of the barrier 77 is changed, the periodic orbit withowt impects (Fig. 6)
touches the bamier tangentially for the critical value of 17, and with further changes of the bifircational
parameter the chaotic attractor appears suddenly (Fig 7). Lyapunov exponents spectra for the presented
attractors are given in Table |.

CONCLUDING REMARKS

This paper briefly reports the larger project of investigations of the flat triple physical pendulum with
arbitrary situated barriers imposed on the position of the system, Some numerical examples for certain
special case of the triple pendulun are shown. On the one hand, the investigated system is very rich source
of non-linear dynamics including non-smooth dynamics, but on the other hand it can also serve as a model
for many real physical and technical objects.
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Fig. 2 Periodic solution for parameters: ¢, =¢, =

¢y =0.1, g, =0.7485, @, =1, =25, e=1, and initial
conditions x] = [1,-1,1,0,0,0,0]. Trajectory (a) and Poincaré sectian (b).

i — -
T a1F " A
s 212k I
i ; _
bloeet 11 a2mur !
|
Wl Yos ,

216t ]

ot
218k ]
23
12 T 3
] 3

(L0 I 11 12

fa) 2

b Xou

Fig. 3 Periodic'or_ﬁitcbn.téiﬁng sli&ing state for parameta's 6 =c;=¢, =02, q, -——0.‘75. o =1, =22,

€=0.8, and initial canditions x =[1,1,1,0,0,0,0]-
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Fig. 4 Quasiperiodic solution for parameters: ¢, =c, =c, =0.1, g, =0.7885, @, =1.005, =25, e=1, and
initial conditions x] = [1,],1,0,0,0,0]. Trajectory (a) and Poincaré section (b).
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Fig. 5 Bifurcationgl diagram of Poincaré sections for ne(213,2.15) and other parameters:

¢ =c;=c;,=0.1, g, =0.7885, w, =1 and e=1. The diagram was performed with the start for =215,

with initial conditions x] = [0.52893,~131279,~2.53054,1 22409,0.97141,0.20193.0].
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Fig. 6 Periodic orbit without impacts comesponding to the Fig. 5 for n = 2.14.
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Fig. 7 Chaotic atiractor corresponding 10 the Fig. 5 for = 2.135. Trajectoi'y (a) and Poincaré section (b).



Fig. no. N A A3 A As " A7 Aftractor

0 0020 | -0020 | 0546 | -0998 | -1472 [ -2.085 Limit cycle

@ 0.000 | -0.041 | -0.043 | -1325 | -1.702 | -1.772 quasi-periodic

0 -0.11 0.1t -026 | -026 -1.71 -2.29 limit cycle

8.12 ) 0,16 -0.32 -0.87 -1.44 -1.85 chaotic

Table 1 Lyapunov exponents for the presented atwactors.
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