ﬁmceedings of DETC'03

ASME 2003 Design Engineering Technical Confarances end

Computers and Information In Engineering Conference
Chicago, llinois, USA, September 2-6, 2003

DETC2003/VIB-48591

MATCHING SOLUTIONS BASED ON SMALL AND LARGE 5 APPROACHES

Igor V. Andrianov

Institute of General Mechanics, RWTH Aachen,
Templergraben 64, Aachen, D-52062, Germany
E-msill: Igor_andrianovi@hotmail.com

ABSTRACT

Two-point Padé and quasifractional approximations arc
matched m order to achieve uniform snd suitable analytical
solution. The introduced approach is applied w Thomas-Fermi
and Schrodinger equations,

1. INTRODUCTION

In order 10 extract moally required full information from a
truncated perturbation series different summalion methods are
applied [1-7]. Unfortunately, those methods not always give the
proper answer, especially if the number of truncated series
terms i8 low [1-3, 3]. It occurs that very often more effective
become the two-point Padé approximations. As it has been
pointed out in reference [8] "There are cases in which both
weak coupling end strong coupling expansions can be
congtructed. In such a case, it should be possible 10 apply
summation techniques that use simultaneously information
from the weak coupling as well as from the strong coupling
expansion, Obviously, such a dual approach should at least in
principle be capable of producing better resulis that a
summation technique which only uses information from either
the weak coupling or the strong coupling expension®.

1f both a weak coupling and a strong coupling expansion is
available, it is en obvious idea to use twopoint Padé
epproximalions (TPPA).

Evidently, the TPPA is also not 2 panacea. For example,
one of the bottle neck’s of the TPPAa method is related to the
presence of logarithmie components in oumercus asymptotic
expansions. Van Dyke [5] wrote: “A lechnique analogous to
rational functions is needed to improve the utility of series
containing logarithmic terms. No striking results have yet been
achieved. We give an example of partial success”. This
problem is the maost essential for the TPPAs, since one of the
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limits (£-+0 or &-> ) for & real physical problems gives
expansions with logarithmic terms or other complicated
functions. It is worth noting that in some cases the obstacles
may be overcome by using an approximate method of TPPAs
construction by taking as limit points not £=0 and £=w,

but some small and large (but finite) values [9]. On the olher
hand Martin and Baker [10] (see- aiso [11]) proposed the so
called quasifractional approximations (QAs). Let us suggest
that we have perturbation approach in powers of s for 6 50
and asymptotic expansions F(s) contgining, for example,
logarithm for &— . By definition QA is a ralic R with
unknown coefficients g;, b;, contining both powers of 2 and
F(&). The coeflicients a, b are chosen in such a way, that (a} the
expansion of R in powers of e match the comesponding
perturbalion expansion; and (b) the asymptotic behavigur of R
for £ — w coincides with F(g).

Quasifractional approximations include the a priori known
elements of an analytical structure of solution. Thia main
advantage sometimes leads directly to get qualitatively required
results [12, 131

2. ALGEBRAIC EQUATION
We heing with simple example [14, 15] of the following
algehraic equation

x"+x=1. 0]

We coosider a positive root to equation (1),
We get
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n=1 =05
=2 x=05(5-1)= 0618034, @
n=5 x=076359,

The small & method is defined by an introduction of the
artificial parameter in the following way

($)=05+0251n25 -0.1251n26% +... . @

The radius of convergence of the series (3) is equal to 1,
and for 5= 1 the first three terms of (3) gives x = 0.58664. The
error related to exact velues equels ~ 5.1%. For & > 1, for
instance for &= 4, one needs to include large number of the
termns of the series (3) and epply the Padé transformation [14].

The series (I) can be tranaformed te the analytically
equivalent form

x=05exp(0.5In25+..). @

The alternative asympiotics related to artificial large
parameler can be constructed for n— o [15]. Introducing

y=x" and taking into account the series

phie =l+l1ny+...,
n

one ge
y-['“—"], )
n
- Inn-Inlnn tn
Y n . (6)
and £o on.

For r =2 the formula (5) gives x = 0.58871, which defines
the emror of ~ 4.7%, For n=35 we have x = 0.79745 with the
ermor of ~ 4,4%, The formmla (6) for 1 = 5 gives x=0.74318,
with the error of ~ 2.7%.

‘We construct a quesifractional spproximation matching the
first term of the series (3) and the asymptotics (5)

1
0.5+ 8In(5+1) [1e8
"[ T+8(6+]) ] : @

For 5= 0 the formula (7) gives exact vaine x = 0.5 of the
root For § = 1 we have x=0.63065, and the emor ~ 2%,
whereas for §= 4 we get x = 0.80137 with the cormesponding
emor ~ 4.9%. The approximation sccuracy ¢fn be increased
using the formulas (4) and (6).

3. THOMAS-FERMI EQUATION
‘We consider a statistical model of a neutral atom governed
by nonlinear Thomes-Fermi equation

) oY
2 @

with the boundary conditions
Q0)=1, Bfx)=0. )]

Here the function ®(x) determines the joint nucleus and
electrons charge density.

The boundary value problem (8), (9) do not have exact
analytical solution. However, numerical solution can be found
with great difficulty: in order to miegrate from x = 0 {usmg, for
examiple, Runge-Kutta procedure) one must assume a value
ford®(0)/dx. If it is chosen to large, the solution will
eventually become singular at some finite value of x in (8). On
the other hand, if 24N0)/dr is chosen w smal, the solution
will cross below the x axis at some finite value of x and become
complex. At the comect value Od+0)/8c=—1.5880710..., the
function @(x) decays smoothly and monotonically from
D0)=1 tod{x) = 0. The number dD(0)/x can be treated
a3 a kind of eigenvalue. [t8 accurate caleulation requires a large
amount of computer time. This ia not surprising because (8), (9)
is a plobal problem whose solution is determined by boundary
data from the widely separated points x =0 and x = . Next we
focus on evaluating O(x) .

When x— 0 there is a power series expansion [16)

d)(;)=l+al.r‘”“ +az.r+a,x(3"” +oesy (10}
where coefficients a; are determined from the jterative relations
ti(f— (5i-3j-6)ma; =0,
=D (m
a‘;io) =-1588), a,=4/3.

=0, a5=

Sommerfeld developed asymptotic solution for x—» oo
[16]:

() = (1 +0.27835073 )38 (12)

Let us point oul thet formula (12) satisfies the boumdary
conditions (%) at x = 0, but it does not yield accurate results for
small x, Sabirov proposed an empirical formula, valid for all
valoes of x [16): : ’

144

®lx)= (x+8)°

A+0+a"? + fexp-x"My), (13

where: b=28802 gy =1.2098, §=-1.2247. However,
expression (13) at some points was maltehed to numerical data,
Due to this, it may not he regarded as the universal solution.

Here we apply the method of quasifractional approximants.
In the case x — 0 we use five leading terms of serics (8) up to
2! order. For x— o2 g solution is obtained from expression
(10} after asymptotically equivalent substitution

20Ty x4 5) 02, (14)
o= (1222783 a
e @
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On the basis of expansion {10} and farmula (15}, we derive
the following QA:
o =12 0.1336:%"9 — 130382 + 0.9598x ') — 0.2523x% 4+ 50D
1+0.1336x%9) 4028425 ~0.1614xY 4 0,02095% + £ DF’
: (16)

where: F = (1+0.2783xK1 + x)° 22y 8

‘Comparison with results of Sommerfeld (12) and Sabirov
(13} is given in Table 1. The QA (16) provides us with the most
accurate results for all values of x.

Table 1. Function ®{x) for differant values of x.

x | Numerical | Sommerfeld's Sabirov’s The QA
data solution {3.5} | formula (3.6) [EX:5)
[ 1 1 1 1
0.1 0.8820 08360 0.8390 0.8520
[1%} 0.6070 0.5360 0.6140 0.6110
1 0.4240 03830 0.4240 04310
2 0.2430 0.2210 02370 0.2430
3 0.1570 0.1430 0.1510 0.1560
L] 0.1080 0.059%¢ 0.108¢ 0.1070
5 0.0738 0.0720 0.0744 0.0772
10 0.0243 0.0130 00264 0.0235
15 00108 0.0102 0.012¢ 0.0104
25 00038 0.0033 0.0043 0.0013
40 0.0011 0.0011 0.0014 0.0011
4. LARGE & METHOD

The problem of a srong coupling in the quantum theory
belongs w one of the most important. In particular a special
atention is focused on construction of the successive
asymptotics to the Schrddinger equation

;a'n+x”v‘—Ew—0, an
w(dw)=0 for N-w, {18)
In this work the new approach is developed which yiclds a
series construction using directly the powers 1/V and achicving
2 guccess in low lecms of perturbation approach.
For N - @, from (17) and (18), we get
Vo tEy =0,
witl)=0.

A solution w the above problem defines the following
energy levels

E,=025x%n+1)*, n=012,...

A comparison of £ with exact velues (ssc Table 2} shows,
that an acceptable accuracy is achieved only for large N, end
therefore one needs to improve the solution.

Tabla 2. A comparison of the exact values of 5N}
obtained numaerically *® with the predicted valuas
obtalnad vla varlous methods.

N [Feown ™ J@.11)  |Eor% | (&.15)
T 10000 | 09106 | 940 | 16063
] 1068 | L0422 | L72 | 41613
7

1.2258 12385 14 16678

1t 15605 | 15831 | 0.81 | 1.6383
E] 11052 | 21078 | 0.0 | Z.1094
700 | 23579 | 20382 | 002 | 23382
500 | 24058 | 24032 | 001 | 240586
T300 | 24431 | 4418 | 041 [ 244309

3500 | 24558 | 24555 | 001 | 343576

Emor%  |@.18) |Emor% |(6.1) | Emor%
159653 | 44720 | 347292 | 10 0

26299 | 1.9514 | 84026 | 0.9974 | 59364
36,0619 | 1.5080 | 23.024 | 117446 | 4.1882
498517 | 16255 | 45654 § 1.5398 1.33
0.2012 21091 | 01340 | 2.1035 | 0079
0011 2.3381 0011 [ 23376 | 0,006
0.002 34038 | 0002 | 24058 ~0
~0 14431 ~0 24431 -0
~ 14558 ~0 14558 ~0

Let us consider the function
e=x* for 0sxsl.
The series of 1/N of the fimction @ for large ¥ reads
e=8x—DEN+) = FNx-DEN+ )T QN+
=SBV )T AN+ 2)

...x(2N+J')"+...=i(—l)'£m(x—l)x
=0

®2N+ v+ N1,
(19)
where: &x) is the Dirac’s function.
The above series (19) is obtained in the following way.
First we use Laplace transform [17] (p is Laplace transform
parameter):

e p N YaN 11, p)

Then we construct a series in relation to 1/(2N +1) of the

obtained expression. Finalty, we auccessively return back to the
originals, in the space of generalized functions (more details are
given, for instance, in reference [18D.

In the space 0< x 51 the equation (17} has the form

Via +@¥ — £y, =0. (20}
We look to its solutions in the following forms
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w= wa@N+ LN+ 107,
k=)

E= EE‘*’(2N+|)"...(2N+|+r)".
i)

Then, after splitting in relation o (2N +1)", we get the
following recurrent system of equations

~¥iom —E Vw10 =0, @n

~Wiim = By - EVpy + 60z =Tyg =0. (22)

A solution to equation (21} in the case of symmetry in
relation to the line x = 0 hag the form (an anty-symmetrical case
is treated in the similar way):

¥, =Ccos dx,

A= (M, @

Let us consider now the space x > 1. In this case (in zero
approximation) the term E 7, can be omitted, and we obfain

pia -l =0 @
We need to apply the decay condition of the form
¥ 50 for xom (25)

A solution to equation (24) using the boundary condition
(25) reads

V-E") ="K, px"),

where: K, is the Bessel function, v=0.5/(N +1).
For x =1 the solutions y, and w, should be matched, and
therefore for x=| we get

o -v,

W,

(26}
pP=yl, i=0l2...
The condition {26) for i = 0 yields the following
transcendental equation
42K, (v}

—clegd = 27
T e S

for unknown 4. The minimal real solutions to this equation for
different values of N are given in Table 2. They prove a high
accurecy of the applied method. !

Now we consider the prohlem related to construction of the
successive approximations in the space x > 1. We
definey, = F(3), where¥ = x¥*' (N +1), and the following
equation fs obtained

Fz+ MV g + XV -F =0, (28)

which defines the function 7 . The functions x*¥ and ™%
are developed into the series of 1/{2N +1) and 1/(N +2) ina
similar to earlier presented way, and they read

W =i(-l)‘&“’(l-lf;)(:hw1)"'x...(zN+1+n", 29
=0

M= i(-l)*s"’(r DN+ N+1+0)7 (30)
e}

Substinding expression (29} and (30) into equation (28)
and matching in relation to 1/N we get 8 successive recurrent
cquations with the sofutions defining the boundary conditions
for w!".

Next, a simultaneous solution 1o the systems (22) and (28)
gives a possibility to define the improved values of £. Using
the successive matching the following function has been
obtained [19]

= 1 '}1_; N Ve " :
E,(N)=—(n+])(2N) r(ﬁ) [EA.(n)N J .

61

where:
A(m) =1 A(m) =0, A{m)=1-0552);

where & denotes the Rieman's Sfunction. In Table' 2 the

calculating results of Ey(N) using the formula (31) with five

first texms and then the Padé approximant (2) are reported [19].
Using only first term of the series (31) we obtain

=2 - N Y
Ey(Ny=—(2N) "1 —| . 2
o{N) 2 (2N} N1t J (a2)
The celeulation results uging formula (32) are presented in
Table 2. )
Let us compare two methods [19, 20). In the reference [19]
a successive procedure of matching of asymptotic series is
presented. However, ot least five first series terms are needed
and then the Padé approximation is applied in order to get good
results.
A direct matching of solutions in different zones with the
yielded transcendental equation [20] solution gives suitahle
resulis atready in the first step of approximation (see Table 2).

5. SCHRODINGER EQUATION: SMALL 3 APPROACH
We consider the following form of the Schridinger
equation

Vo -2 ¥p s Ey=0
Using the series
2 14+ 5M(x?) + v

we develop the being scught both eigenfunction w and the
eigenvalue £ into the series
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W=y + Sy + 8wy + ., 33)

E=Ey+8E,+8E; +... 34)

In result we get the following recurrent system of boundary
value problems related to eigenvaluss )

Wou — 5 'We + Egrg =0, (35)

Wig =39y + Eqwy + Eirg = 5w In(z?),  (36)

w0 for |xbpe, i=123.. (37)

A solation to the boundary value problem (35}, (37) has the

form

EM a4+l ol ="K, {x), n=012,..

The boundary valuc problem (36), (37) yields
L]
J'x’e"’ H(@InGx")de

ER o .
! 1-:2"»!
For n=0we get Ho(x)=1 and (see [17])
Ix" nxe" de= -‘g;—

-

where: C=0.577215... is the Euler's constant.
Therefore ~

(2-2ln2-0),

E® < E+-l—l6-(2—2ln2 —C)+ ... %)

2. MATCHING PROCEDURE

Matching for small and large & can be obtained in various
ways. The most simply procedure is related to matching of
formula (32) and of the first term of the series (38) related to
cigenvalue for small &

Using the solution
2
.¢+r(N’:])
Eg(Ny o —————. (39
42N +a) i

we get @=xT(1.25)~2~6946. The computational results
due to formula (39} are given in Table 2,

The second possibility concerns 3 matching of solutions
(34) and (31),

2. CONCLUSION

It has been shown that the matching using two-point Padé
approximations and quasifractional approximations can be
widely used during construction of the 1/¥ expansions. The
-presented approach is also applicable to the strong coupling

problems and even in all cases, where two limiting series in
relations 1o any parameter can be constructed [21].
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