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ABSTRACT 

A  mono-cylinder combustion engine is modeled as the 
triple physical pendulum with barriers. The proposed model 
exhibits well known six stages of sliding of a piston along a 
cylinder per engine cycle and it can be useful while 
investigating impacts between the piston and the cylinder. 

1 INTRODUCTION 
 Many real processes like earth-quake caused vibrations of 

high buildings can be modeled via coupled pendulums. It is 
clear that a couple system of pendulums may exhibit more 
complex nonlinear dynamics than a single harmonically or 
parametrically excited pendulum (see references (Awrejcewicz 
et al.,  2002; Bishop and Clifford, 1996; Szemplińska-Stupnicka 
and Tyrkiel, 2002a, 2002b; Szemplińska-Stupnicka et al., 
2000)). In addition, one may expect that many theoretical 
unsolved problems of nonlinear dynamics can be explained 
using a model of rigid multi-body coupled pendulums. 

 Our research is mainly focused on application of triple 
pendulum dynamics to a real world object. In spite of 
neglecting of many technological and design-oriented details, 
an inverted triple pendulum can be used to model a real piston – 
connecting rod – crankshaft system of a mono-cylinder 
combustion engine.  

Problems of modeling of multi-body systems with activity 
state of constraints varying during dynamics are addressed in 
references (Ballard, 2000; Pfeiffer, 1999; Wösle and Pfeiffer, 
1999). On the other hand,  the problem of stiff impacts  in 
multi-body systems is illustrated and discussed in the 
monograph (Brogliato, 1999).  
2 PISTON – CONNECTING ROD – CRANKSHAFT 
SYSTEM 
The general model of the triple physical pendulum with 

barriers (Awrejcewicz et al., 2001, 2002; Kudra, 2002) can be 
used to build a model of the piston – connecting rod – 
crankshaft system of the mono-cylinder combustion engine 
shown in Figure 1. The first link represents the crankshaft (1), 
the second one is the connecting rod (2) and the third one is the 
piston (3). It is assumed that the links are absolute stiff bodies 
moving in a vacuum, in the plane of a global co-ordinate system 

yx,  (with origin in the point O1). The links are connected in 
points Oi (i=1,2,3) by rotational joints with viscous damping of 
real coefficients ic  correspondingly. The points ci are the mass 
centers of the corresponding bodies and the position of the 
system is described by three angles iϕ  (i=1,2,3). 

The cylinder barrel imposes restrictions on the piston 
position, which moves in the cylinder with backlash. It is 
assumed that in the contact of the surfaces between the piston 
and the cylinder, a tangent force does not appear.  

It is assumed that a gas pressure force ( )1ϕF  is a function 
of the angular position of the crankshaft 1ϕ  and can be reduced 
to the force acting along line parallel to the axis of the cylinder 
and containing the piston pin axis 3O . Moreover, the crankshaft 
is externally driven by the moment 0M  originating from an 
external power receiver (brake) and acting contrary to the 
positive sense of the angle 1ϕ .  We assume also that the 
rotational speed of the crankshaft is positive. 
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Fig. 1  Piston – connecting rod – crankshaft system. 

 
The non-dimensional equations of motion, when non of the 

obstacles is active, are as follows 
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where the symbols ( )
o

...   and ( )
oo

...  denote respectively the first 
and second derivatives with respect to the non-dimensional  
time t , and the following non-dimensional parameters are used 
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where n [rot./min.] represents the real average rotational speed 
of the crankshaft, pmax is the maximal pressure over the piston, 
and ( )1ϕp  is the non-dimensional pressure distribution with 
period Nπ2   (where N is an integer number) such that its 
maximal value is one and  mη  is the mechanical efficiency of 
the engine, i.e.  FMm LL /−=η , where LM is the 0M  force work 
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and LF is the ( )1ϕF  force work. In the expressions (3) the 
following notation is used 
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1
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In the above Jzi (i=1,2,3) denote moments of inertia of the 
appropriate links with respect to the principal central axes 
perpendicular to the movement plane, whereas mi (i=1,2,3) 
denote masses of respective links and g is the gravitational 
acceleration. 
Moreover the following relation between non-dimensional time 
t  and the real one τ holds 

 
 ταα 11=t . (5) 
 

Note that some non-dimensional parameters refer to the 
dimensional ones by the use of terms with the gravitational 
acceleration g, but in the final form of the governing equations 
(1) the gravitational forces are neglected (Awrejcewicz et al., 
2001, 2002; Kudra, 2002). The presented here model of the 
piston-connecting rod-crank shaft system serves as a special 
case of the earlier triple physical pendulum model, in which the 
non-dimensional time is scaled in such a way that the non-
dimensional angular velocity of the shaft is approximately equal 
to one. Moreover, more convenient setting of the system 
parameters in the case of the engine model is introduced, i.e. a 
user of the program should give the gas pressure parameters, the 
mechanical efficiency of the system and the ratios of 
appropriate damping coefficients. Both external power receiver 
moment and absolute damping coefficients do not require a 
definition. 

A restriction on the piston position imposed by the cylinder 
barrel can be described using the following non-dimensional set 
of inequalities (representing stiff unilateral constraints): 
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and the same restitution coefficient e is related to each of the 
unilateral constraints. 

Observe that the proposed dynamical model of the piston – 
connecting rod – crankshaft system can be treated as a 
simplified model, since some very important technological 
details are neglected. The most important simplifications 
follow: (i) tangent forces of interaction between the surfaces of 
the piston and the cylinder are neglected; (ii) interaction of the 
piston-cylinder introduced by the piston rings (by means of 
friction forces in the ring grooves in direction perpendicular to 
the cylinder surface) is neglected; (iii) simplified friction model 
in every joint of the system (i.e. linear damping) is assumed. 

In addition, modelling of an impact between the piston and 
the cylinder, where an oil layer exists, requires an approach 
different from the generalized restitution coefficient rule. 

In other words, a detailed modelling of the piston – 
connecting rod – crankshaft system with all essential 
technological details exceeds scope of this work.  However, we 
believe that the general model of the triple physical pendulum 
presented in section 2 and being the subject of some earlier 
works (Awrejcewicz et al., 2001, 2002; Kudra, 2002) can serve 
as a good starting point for the more advanced and close to 
reality dynamical model of the piston – connecting rod – 
crankshaft system, taking into account lateral motion and 
impacts between the piston and the cylinder barrel. 

It should be also noticed that the presented model can 
govern steady state solutions of the system, and the simulated 
transient motion does not correspond to the real piston – 
connecting rod – crankshaft system. 

Dynamics of the piston – connecting rod – crankshaft 
system has been rigorously studied in the Habilitation Thesis 
(Sygniewicz, 1991). Although the model presented  by 
Sygniewicz satisfies the assumed role, it does not take into 
account the full piston dynamics including a lateral motion of 
the piston in the cylinder barrel. In contrary, our proposed full 
dynamical model of the piston – connecting rod – crankshaft 
system governs in full dynamics of the piston analysis including 
impacts between the piston and the cylinder. 

The full employed computational model is not presented 
here (see for details (Awrejcewicz and Kudra, 2003; Kudra, 
2002)). In particular, the integral part of the system state 
(besides the generalized co-ordinate and velocities vectors) is 
the state of each potentially active constraints, described by the 
appropriate index sets (Ballard, 2000; Pfeiffer, 1999; Wösle 
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and Pfeiffer, 1999). Each of the constraints can be inactive, in 
the state of impact or in the state of sliding.  

The impact is modelled by the use of generalized Newton’s 
impact law concept, based on the restitution coefficient 
(Brogliato, 1999). A sliding state is defined by a continuous 
contact between the system body and the surface of the barrier. 
It is modelled by the use of Lagrangian multipliers, which 
represent normal reactions from the barrier surface acting on the 
system. 

The Runge-Kutta integration within the time intervals 
between each two successive discontinuity points is applied. 
The discontinuity points are the points of change of the activity 
state of any constraints (i.e. impact event, or the beginning or 
end of the sliding state), and they are detected by halving the 
time step until the assumed precision is obtained. 

3 NUMERICAL EXAMPLES 
In this section the non-dimensional pressure distribution 

function p(ϕ1) shown in Figure 2 is used applying the data 
included in reference work (Sygniewicz, 1991), and concerning 
the real pressure function obtained experimentally from the 
engine 1HC102. The period of the function is 4π (N=2 for the 
four-stroke engine), maximal pressure pmax=8MPa for the 
rotational crankshaft speed n=1200 [rot./min.] and the full 
engine loading. 
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                 Fig. 2  Gas pressure function used for calculations. 
 

The function p(ϕ1) is developed into the Fourier series with 
K=25 terms. The rest of parameters are as follows: kg101 =m , 

kg12 =m , kg4.03 =m , 2
1 mkg1=zJ , 2

2 mkg0075.0=zJ , 
2

3 mkg001.0=zJ , m04.01 =l , m15.02 =l , m01 =ye , 

m12.02 =ye , m01.03 =ye , m08.0=d , m08.0=s , 

m04.0=h , 85.0=mη , 2.021 =c , 1.031 =c , 2ms81.9 −=g . The 
following real parameters are found owing to the introduced 
values: Nm7.240 =M  and sNm0288.0 1

1
−=c . The 

calculations are performed for different values of  the restitution 
coefficient and the external diameter D. 
 

The zero initial conditions in the time instant 0=t  are 
applied in all further shown examples. In Figures 3-8 the steady 
state solution is shown within the time interval ( )5500,5000∈t . 

The following non-dimensional co-ordinates describing a 
position of the piston pin axis are used 

 
 

221
1

3
3 sinsin ϕλϕ −−==

l
xx O

O
, 

 
221

1

3
3 coscos ϕλϕ +==

l
yy O

O
. (8) 

 
The response of the system for the restitution coefficient e=0  
and the cylinder diameter D=0.08008 m. (the backlash of the 
piston in the barrel is 0.08 mm) is shown in Figure 3. It is seen 
from the  figures that the piston six times moves from one side 
of the cylinder to the second side during one cycle of the engine 
work, and most of the time the piston adjoins either to one or 
second side of the cylinder surface. This result confirms the 
investigations presented in the work (Sygniewicz, 1991). 
However, the piston loses contact with cylinder moving from 
one side to the second side of the cylinder with a small rotation 
angle. This phenomenon differs from results presented in 
reference (Sygniewicz, 1991). Namely, it was assumed that the 
piston do not loose the contact with cylinder. The crankshaft 
angular positions in beginnings and ends of the phases of the 
piston adjoining and sliding along the cylinder (see the example 
shown in Fig. 3) differ also from results presented by 
(Sygniewicz, 1991) up to 35°. In the latter case, the exhibited 
differences follow from neglected by us some essential 
technological details mentioned in the previous section. 

In Figure 4,  the results for the larger restitution coefficient , 
i.e. e=0.5 are shown. It is seen that the states of the piston 
adjoining to the cylinder surface are in general the same as 
previously. Only the beginning of each of them is slightly 
delayed, since the piston bounces against the cylinder few times 
before sliding occurs. Figure 5 contains successive piston 
positions yielded by this solution. The results for the restitution 
coefficient e=0.9 (Figure 6) for five times larger backlash 
between the cylinder and the piston (D=0.08040 m), and for the 
restitution coefficients e=0.5 (Figure 7) and e=0.9 (Figure 8) 
are also reported. It is worth noticing that the system has at least 
inclination to reach the same states of the piston adjoining and 
sliding along the cylinder, and lasting in the same crankshaft 
positions as previously. Since multiple impacts between piston 
and cylinder occur, it happens that the piston rapidly leaves the 
contact and transits into a second cylinder side. 
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Fig. 3  Response of the system for e=0 and D=0.08008 m. 

 

5 Copyright © 2003 by ASME 

 
 
 



 

 

 

 

 
Fig. 4  Response of the system for e=0.5 and D=0.08008 m. 

 

6 Copyright © 2003 by ASME 

 
 



 

 

 
Fig. 5  The successive positions composition of the piston in cylinder barrel for e=0.5 and D=0.08008 m. 
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Fig. 6  Response of the system for e=0.9 and D=0.08008 m. 

 
Fig. 7  Response of the system for e=0.5 and D=0.08040 m. 

 
Fig. 8  Response of the system for e=0.9 and D=0.0840 m. 
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4 CONCLUDING REMARKS 
A piston – connecting rod – crankshaft modeled as the 

triple physical pendulum with impacts (in spite of some 
differences) behaves in a way similar to that described and 
illustrated in the monograph (Sygniewicz, 1991). In particular, 
six piston movements from one side of the cylinder to its 
opposite side (during one cycle of the engine work) have been 
detected. Mainly lasting states of the piston adjoining and 
sliding along one or the second side of the cylinder surface 
have been observed. The presented model can be treated as the 
first step to describe the real piston-connecting rod-crankshaft 
system, and after taking account of some technological details 
the better convergence with real system behavior can be 
expected. Moreover,  the proposed model describes full 
dynamics of a piston motion in a cylinder, and hence it can be 
very useful for the noise analysis generated by impacts 
between piston and cylinder barrel. 
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