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Bifurcations of thin plates transversally and sinusoidally excited
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ABSTRACT: Parametric vibrations of a flexible plate with infinite length are analysed. The plate ‘is
considered as a systenm with infinite degrees-of-freedom. The method of calcutations of the Lyapunov
exponents spectrum of the considered system is proposed. In order to verify resuits the spectrum of Lyapunov
exponents is also computated using known Bennetin's method. In addition, bifurcations and chaotic dynamics

ofthe analysed system are reported.

I INTRODUCTION

Although parametric vibrations of flexible plales
with infinite length are considered in large amount
of publications, in majority of them the mentioned
continuous system is analyzed as a one-degree-of-
freedom-system. In this work we consider complex
vibrations and bifurcations of plates as a system with
infinite degrees—of-freedom. The Bubnov-Galerkin
method with high approximations and finite

difference methods with approximation of O(h') are

applied to trace regular and chaotie motion of (he
mentioned dynamical system.

2 FUNDAMENTAL RELATIONS

We consider large deflections of anisotropic plalc
with infinite length assuming that one of the plate
dimensions is essentiatly larger than the other one.
To solve the problem, 2 unil width belt with the
length b is separated from the rectangular plate. The
governing differential equation has the following
non-dimensional form
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_ The equation (1) is transformed to non-
dimensional form using the following relations
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where:p denotes the plate dimension, 4 is platc
thickness, w{x,t) is the deflection function, and
Pfr) and glt) are the longitudinal and transversal
loads, respectively.

The following boundary conditions are associaled
with the equation (1)

w=w,=0 for x=0;l, 2)

w=w =0 for x=01. Q)
The initial conditions read, respectively:

wix], ., =001sinme, wix],., =9, @)

u{.rlno =0.01(I - cos 2rx), u{xl,_u ={. {5)

A solution to the formulated Cauchy problem is
found using two approaches; ie. the Bubnov—
Galerkin method and the method of finite
differences with approximation of O(h"). Recall,
that - the Bubnov-Galerkin method reduces the
initial-boundary problem to that of solution to a
system of ordinary differcntial equations. Assume a
solution in the form
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where w(x) should satisfy one of the given

boundary conditions (2), (3). Applying the Bubnov—
Galerkin procedure to the equation (1) the following
system of ordinary differential equations with
respect to A4, (¢) is obtained:

S ieetay =-g a3 40, +
A1(r))i'4:c.‘t +Py(’)5}:45& +0Q (t),

where: k=01,....
Above the following notation is used:
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It is easy to reduce the second order differential
cquations to first order ones and then to solve them
using, for example, Runge-Kutta method.

3 FINITE DIFFERENCE METHOD

To reduce the partial differential equations (1) to
ordinary differential equations the finite difference
method with O(i:') approximation is applied 1o the

spatial coordinate x. In the grid space
G,={O$Xi$1,x‘.:ifr,f7==—!—- =1, 1
N Ay

the partial derivative are substituted by the
difference approximations
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and the equation (1) is transformed to the following
set of equations

dlw,  dw, 1
+e—L=——A4, +
dt’ ¢ dr 6 [‘(W')

{I } () + (12)
PAA, () + g, ih)

Note that in the equations (12) integration along
the plate length is carried out using the Simpson's
formula. Applying the approximation O(h‘) we
have two series of the out-contour points. The

following observation helds for th2 boundary
conditions (2), (3):
~ for the balls supported edge (1), = ("),
~ for the clomped edge (1), = -(),.
Introducing the change of varjables

dw, \ 13)
kit S

et ’ (

the equation (12) is reduced 10 the following first
order differential equations with respect to the
deflections w; and velocities w;:

d\v: dw, 1

a + & -‘;f‘_ = -g/{i“, (h',)'f-

i{ lj(/‘l,(w,.))zdx}zix, (w, )+ (14)
/yd (.').ri:, (‘)\-‘i )+ q(r,z‘h)

The obtained ODEs (13) and (14) are solved
using Runge-Kutta method of the second order.

4 APPLICATION OF THE BUBNQV-
GALERKIN METHOD

A solution (6) is sought in the form

w,(x) = sin(2i + 1)zc. (1%)
In the case of parametric vibrations

P,(t)=P,sinlw,1) and for g{r,x)=0, the system

{7) is wansformed to the following one-degree-of
freedom system:

4;1'9(:)4»0'{‘,(1){-(%’/1 -x'P, (r)].‘t,,,(f)«‘ (16)
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The obtained second order ordinary differential
equation, , is reduced to the system of two first order
ordinary differential equations, which are then
solved using Runge-Kutta method of the second
order.

5 LYAPUNOV CHARACTERISTIC
EXPONENTS

We briefly recall the know algorithm of Lyapunov
characteristic expoients computation. Theory of the
Lyapunov exponents has been applied by Oseledec
1968. A connection between the Laypunov
exponents and Kolmogorov entropy has been
considered by Bennetin et al, 1978, 1979 and
rigorously formulated by Pesin 1977. In the
literature devoted to investigation of chaotic
vibrations of various dynamical systems the method
proposed by Bennetin et al. is widely used.

Although in general we apply the Bennetin et al.,
1978, 1979 method, but for low dimensional systems
one may solve the problem in an analytical way.

For instance, for our system (16) the associated
Jacobian has the form

HdA,.0)=

2.0 - (7
P+ P ()~
]2%1ﬁ | 4‘1 i

Assuming 4,4, to be eigenvalues of the
Jacobian, one may solve the system of differential

equations:

A(0)= (:‘; g;ﬂ to get

1 . ,
= A, A0)+ A, (D)™ —
poo I ORAON
1

31__—1:{"1(_2:’10(0)*‘4;(0)34 - (18)

a0 0k} J
A= 2,4,(0)+ £, (0™ }

Observe, that in general A and A, are complex
values and hence the latter formula has different
representation for complex and purely real 4.
Therefore, the mentioned drawbacks of the
Lyapunov exponents computation are omitted here,
since instead of numerical integrations we apply the
analytic formula (18).

‘:'—A =7xA with the initial conditions
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Figure 1. Lyapunov charactenstic exponent estimated using the Bennstnn ctal. 1978, 1979 method (method 1) and our method
{method 2} versus P,
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This proposed approach essentially decreases the
computational time and increases accuracy of the
results A compatison of two described methods
shows that they in practice are eguivalent. A
difference in results is less than 1%.

The analytical form (18) has also & physical
interpretation. Observe that the length of the vectors
x;, exponentially increases {decreases) with respect
lo the real parts of A, and 4,.

Therefore, the Lyapunov exponents compusation
can be estimated by a direct averaging of real parls
of the Jacobian matrix eigenvalues along the
investigated phase curve. The proposed method is
more switable . to estimate Lyapunov exponents
conlrary to the classical one, which is only
approximated numetical realization of the original
idea.

However, although the qualitative behavior of
two discussed methods is similar, but quantitative
differences are rather expected. As an example a
comparison of computations of maximal Lyapunov
exponent versus excitation amplilude £, for lixed
@, cqual w eigenfrequency of the considered
system is shown in Figure 1. The obtained resulis
coincide well with the Fourier analysis (FFT) of
these vibrations. In words, the harmonic vibrations

b 5 0w 25

W Qamped vibraticns ® O nonara W Omega?

& Omega

correspond to negative values of the maximal
Lyapunov exponent, chaotic vibrations ¢orrespond
to its positive value, and in the case of a bifurcation
the LCE is close to 0.

& APPLICATION OF BUBNOV-GALERKIN
AND FINITE DIFFERENCE METHODS-
NUMERICAL RESULTS

The system of egquations (13, (2), (3) and {4), (5) is
solved using both Bubnov-Galerkin and finite
difference methods. The investigations are focused
on construction of plate vibration charl in the
parameter plane (F,,@,) for each of the boundary
conditions. It has been observed that vibrations are
defined in full by the vibrations of the center of the
plate (x=0.5), since other plate points move in a
synchronized way. The intervals 0.5 <o, <1.5 arc
applied while constructing the chan, where a; is the

eigenfrequency of the plate for given boundary
conditions.

Figure 2. Regular and chaotic dyramics in the plane (P, a3.)
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The interval of P, changes is chosen in 2 such
way that a maximal deflection does not achieve 7
times of plate thickness.

For the boundary conditions (3) the
eigenfrequency @,=3, and thc interval of “chart”
construction is equal to [1.5, 4.5]. Interval of P,
changes 1s {0,50]. The “chart” corresponding to the
applied boundary conditions is reported in Figure 2.
Observe that results obtained using either Bubnov—
Galerkin or finite difference methods are identical,
which proves their reality (true values).

In both Bubnov—Galerkin and finilc difference
methods the used fime step o5 =0.0078125. In
addition, in the latter method n= 8(dr=0.125).
Those parameters are found from the Runge's rule
and thcy guarantee a convergence of the harmonic
vibrations.

Let us now analyze the chart reportcd in Figure 2.
We trace dynamics by observing the cross sections
along the P, axis, which correspond (o the change of
extemal amplitude excitation (the frequency of
excilation is constant). Applying such way of
analysis one may separate the plane into three parts:
fl.5, 2.2]-low frequencies; [2.2, 3.8]-average
frequencies; [3.4, 4.5]-high frequencies.

For small values of amplitudes of the exciting
force the introduced energy 10 the syslem is to small
lo realize the undamped stationary vibrations. The
lowest pant of the chart corresponds 1o damped
vibralions. The first stiff bifurcation is represented
by the 1op boundary of this part, [n words, a slight
increase of the amplitude of external excitation
vields a qualitative change of vibrations.

A transition from damped to harmonic vibralions
takes place. In addition, two different cases may be
distinguished after the “stff" bifurcation: the
frequency of vibrations is either equal to the extemal
excitation frequency or it is twicely smaller. This
frequency serves as criterion for partition of the
plane into different frequency zones.

For zones of low and high frequencies (the
vibrations with @, {2 appear, whereas for zone of
averaged frequencies the vibrations wilh @, oceur.
The obtained numerical resulis suggest that the
harmonic plate vibrations are possible only for three
following frequencies: @, /4. @, /2, and w,.

We briefly follow the scenario of bifurcations for
average frequencies zone. After the stiff bifurcation
the harmonic vibrations with the frequency @,

appear. The next increase of P, leads to the
bifurcation series and {0 transilion lo chaotic
vibrations. Then, again harmonic vibrations appear,
but with the frequency @, and the related transition
is not associated with a series of bifureations. A
similar like scheme of frcquencies swilching is
typical aiso for two other parls of the parameter
plane with the only one diflerence: instead of the
tnitial frequency @, now &, 2 appears.

In addition, in the investigated “chart” the areas
with harmonic vibrations with the frequency o, /4,
and the areas where bifurcations are observed, are
separated.

For areas with bifurcations two special cases are
addressed: (i) a transilion from harmonic to chaotic
vibrations, and (if) an invesligation areas being
intcrnal ones for zones of harmonic vibrations.

The singular cases occurring on the borders
between frequency zones are investigaled separately.
The jump-like swilching bctween frequencics is
obscrved, i. e. either a lack of bifurcation series or
transition to chaos are detected. The discussed
frequency zones are: [2.1, 2.2] and [3.8, 4.2).

[n the mentioned frequency intervals one may
observe stiff bifurcation twicely, Afler the first stiff
bilurcation stable harmonic vibrations appear. Next,
in the shori interval of P, the vibrations again are
damped. Then again stiff bifurcation occurs, and the
harmonic vibrations with different frequency appear.

Following the intreduced study of the chard one
may also detect self-similarity of its pars,
particularly in the part corresponding to small
amplitudes of external force. The shapes of areas are
repeated in all three zones, and higher frcquencies
corrcspond to larger area dimension. As it has been
already  mcntioned, neighboring  zomes  are
distinguished through switching of frequency order
for hammonic vibrations. Therefore, similar areas
have only qualitatively the same vibrations, but they
may differ with respecl to quantizied exponents.

Since on the same intervals of parameler changes
a route to chaos is associated with bifurcation series,
the problem of comparison with Feigenbaum
scenario is addressed.

The first 8 bifurcations are numerically traced
using the Bubnov—Galerkin method. As an example,
the data obtained for the eigenfrequency @, =3
required for the Feigenbaum constant computation
are reported in Table 1.

Table 1
1 2 3 4 5 6 7 8
P, |2.573266{2.603611]2.313630{2.616679 | 2.616790 (2.616790]2.616814|2.61819
C 3.028 3975 4,770 4.759 4,708 4,683
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Figure 3. Frequency spectrum with marked eight bifurcations

The obtained results coincide very well with the
theoretically obtained value

n LE}
c. =limE 5 L e,
ERsls P:d _ .p:
In Figure 3 the frequency spectrum for @, =3,
P, =2.616819 with eight bifurcations is reported.
A route to chaos is strictly associated with the
Feigenbaum scenario.

7 CONCLUSIONS

Both Bubnov-Galerkin and finite difference
methods are used to analyse regular and chaotic
dynamics of a flexible plate with infinite length. The
analytical method for computation of Lyapunov
characteristics exponent is proposed.

The series of period doubling bifurcations in the
plane (P,®,) are easily traced in the power
spectrum  (Figure 3). Eight
numerically detected.

The process of chaotization is characterized by a
broad band noise occurred in the spectrum support.
The peaks corresponding to fundamental frequencies
and their harmonics remain clearly distuiguished.

The sequence of period doubling bifurcations
approaches the strange chaotic attractor.

After the Andronov-Hopf bifurcation the stable
limit cycle is born, and the previously stable
equilibrium (singular point) becomes unstable of the
saddle-focus type with one dimensional stable

w'and two dimensional unstable w" manifolds. First,

the unstable manifold w" of the equilibrium is the
limit cycle. Then two smallest muluplicators of the
limiting cycle become complex — conjugated. The

bifurcations are

manifold w" starts to wind up on the limit cycle and
the configuration similar to a funnel appears. All

attractors from a certain space are pulled into this
funnel, and the trajectorics move in a chaotic
manner.
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