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ABSTRACT: Periodic and chaotic dynamics of a bush being in a frictional contact with a ro-
tating shaft is analysed analytically and numerically. An analytical chaos prediction using the
Melnikov method is carried out, and then verified and further analysed numerically. Further-
more, more complex dynamics of the mentioned system using abrasive wear models and fric-
tional heat generations are analysed numerically and some important conclusions are given.

L INTRODUCTION

Chaotic vibrations in lumped systems with friction have been widely analysed (see, for
instance [1-3]). In Refs. [3] the analytical conditions for chaos occurrence are formulated
applying the Melnikov method # for harmonically driven systems. In this work, the bush -
rotating shaft system (the shaft is kinematically (harmonically) excited) is analysed analytically
using the Melnikov method. A prediction of a chaotic zone has been then verified numerically.
Vibrations induced by friction and accompanied by thermal and wear processes are less
investigated problems. Analysis of the onset of such vibrations as well as the behaviour of the
contact characteristics (contact temperature, contact pressure and wear) may contribute to an
explanation of the complex phenomena observed in such mechanical systems as pad brakes,
grinding machines or in machine tools with a required very high tolerance.

Friction, wear, frictional heat generation and heat expansion belong to very complicated
processes, which interact with each other, creating multidimensional and complex pairs of
frictional objects. In a case of an un-stationary frictional process, changes of friction
parameters are mutually dependent. We are going to investigate if frictional heat generation
and wear may influence the periodic or chaotic motion which appears in a dynamical system
modeling a bush-shaft unit with kinematic excitation.

The classical problem concerning vibrations of a pad attached to a rotating shaft linked with
housing through springs corresponds to a schematic model of a braking pad or Pronny’s clamp. It
has been investigated in the works of Andronov et al™® A thermo-elastic contact between a
rotating shaft and the non-movable and non-inertial pad has been investigated in references
Pyryev and Hrylitskyy™®, and Pyryevm. Dynamical problems of the thermo-elastic contact with
friction generated heat transfer have been analysed in references Olesiak and Pyryev 182,

In this work the more complicated problem of a flat and axially symmetric thermo-elastic
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contact of the rotating shaft with the bush fixed by springs is addressed. The self-excited
chaotic vibrations caused by friction, including wear, are analysed.

II. BASIC EQUATIONS
Elastic and heat transferring cylinder with a radius R, is inserted into bush. The internal
radius of the bush attached on the cylinder is equal to R, . The bush is linked with the housing

by springs. We assume, that the bush is a perfect rigid body, and that radial springs have the
stiffness coefficient k,, whereas tangent springs are characterized by non-linear stiffness &,

and k, (Duffing type stiffness) related to a unit length of the bush.
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Fig.1 Analysed system Fig.2 Friction versus velocity

The cylinder rotates with a such angular velocity () = 2, @, (1), that the centrifugal forces

may be neglected. We assume that the angular speed of the shaft rotation changes in accordance
with o =@, +{, sinw’, where §, is the dimensionless amplitude of the kinematic excitation.

We assume that the bush ideally transforms heat and that initially the temperature is governed by
the equation T, +Tyhy (1) (hyp (1) = 2, £ — o0 ), and also that heat transfer is Newtonian between

shaft and bush. The shaft starts to expand and a contact between the shaft and bush appears. We
assume that between bush and shaft dry friction (related to unit length) appears defined by the
function F,(V,), where V,, = £2R| — ¢, R, is a relative velocity between the two given bodies. B,

denotes the mass moment of inertia related to a length unit. We assume also that in accordance with
the Amontos assumption the friction force F, is equal to the scalar product of the normal reaction

force N(z) and the friction coefficient, ie. that F, = f(V, )N (1) is the friction force defining a
resistance to the displacements of two bodies; f(V,,) is the kinetic friction coefficient. The friction
force F,, generates heat on the contact surface for R =R, and wear U, of bush occurs. 7;(r.1)

denotes the cylinder temperature which is equal to 7, in the initial instant.
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The problem is reduced to that of finding the displacement ¢,(r) and the angular bugp
velocity @,(z), displacement U(R,t) in the direction of the cylinder radius R, radial stress i
the cylinder G, (R,7), contact pressure P(1) = N(1)/27R) =0 5 (R;,1), cylinder temperatyre
T;(R,1) , and bush wear U, in agreement with the Archard’s assumption U (1) = K [V, (7)|P(z) .

Vibration of the bush being in a contact with thermo-elastic rotating shaft has the form:

H(2) - 9(0) + b’ (1) = €F (@, =) p(r), 0<T <o, W
P0)=¢", ¢p0)=0*

where: @, =, +{, sinwr . The non-dimensional contact pressure p(r), shaft wear u_ (1) and
shaft temperature 6(r,7) are found from the equations:

T : T
p(T) = BiB[ G, (v ~&)hr (YAE ~k, [l - ¢|p€)dE +
1] 0
: )
13]G, (T ~E)F (@, - ) p(E )@, - $)dE,
0

8(r,7) = Bi@ [ Gy (r,T —E)hr (§)dE +1B[ Gy (T -EVF(§ - 9) )P ~$)dE 3)
0 0

where:

%; (1), Gy (1, T)}— ‘ﬁ)s 1} Z {ZB" Z,LI,,,} —p,":,ﬁr ) @

m=| umm(Ba +ym)

Note that 1, are the roots of the characteristic equation (m =12.3....)

BiJo() =y (1) =0 ®)
where: J, (1) is the first order Bessel function with argument gt .
In equations (1)-(5) the following non-dimensional quantities are introduced:

r:-i' w._—._ p:-‘_‘.}_‘ uzzy_z_q 3=IL£1, °=£2._' a)°=m2'
Ry 1. 0.1, i u, T Q.1 02,
sl B quS::‘Q?’ _RuoR? CpioGrRi  _QPLKR _2E@RIQ
* B, B,Q2, A £ u, Al- ZV)
. l.a 5 N
@= R’ b () = hp (0,7), F(@y - @) = f(RQ.(0,-9)),

1

and the following notation has been used:

‘82 ZE‘(I]TO
= v A= y ke =k o/l DA+ /Ry )=ka,
'Jk.R% T—2v 1Go/l ~D(+1 /R )=k

where: Iy is the un-stretched spring length, [; is the length of the compressed spring for @, =0,
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E, is the elasticity modulus, v is the Poisson coefficient, ¢, is the shaft expansion coefficient,
1 : 3 2 X .

ooy is heat taking up coefficient, q, is the temperature compensation coefficient, 4 is the heat

ransfer coefficient, K, is the wear coefficient. Friction dependence on velocity is

approximated by the function

(/Iy} for y=0,

(6)
[-1,1] for y=0.

F(y)=FySan(y-ay+ B, Sgnly)= {

1. MELNIKOV METHOD
Dynamics of system (1) for x=¢ , y=¢ and without the tribological processes
(y=0, k, =0)is governed by the following equations

X = pg(x,y)+&p (x,y,07,8),

. (7)
y=qo(x, ) +egq(x, y,01,8€),

where:

Po(x-}’) =, P1 (x,y,wt,8)=0, ®)
golx, y)=x-bx>, q,(x,y,07,8) = F(w, +{, sinwr - y).

Observe that for a sufficiently small £ the system (7) has one homoclinic orbit of the form

__ z sinh(7)
Yo(®) ‘/; cosh® (1) ’ ®

2
*o(®) = b cosh(z)’

and the Mielnikov function is defined by the formula

L el T
M(@6)= [ (G0P = 9170 ey gerpy 97 =~ | @1P0]epgr ey 4T (10)
= ¥=Jolr-1o) == y=xo(7-70)

where: x4(7), yo(7) is the solution of unperturbed system of equations ( €=0 ), which
corresponds to the homoclinic orbit, and 7, is the parameter characteri.in: a position of the
point belonging to this orbit. According to the Melnikov theory, if the function M(z,) has
simple zero root, then for sufficiently small € the motion governed by the equations (7) will be
chaotic. The Melnikov function has the form

M (zg) = I{tg) +2C + 2L A% + B? sin(wry + @) +
6,8{3(1223 cos? wry + L sin? wrg - 20,1, sinwr, cosm‘rn)d- an
2,BC,?(— T30 c08° @ty =311, sin® wry coswry

where:
A=(a=3Ba) 10 ~3B10, B=6B80.0l,

C = Pl — (@0 =3B g , ¢ =arctan(A/B),

In)‘k = Ibo(I)T L‘im(ax)}’ [cos(wt)]* dr. (12)
0
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After integration of {12) we obtain

N _ mQ-e’) Lo 1
W T 0 T gy T Gbsinh(ma/2) " 1'° /2b cosh(mw/2)

o ) o) ot )
fe

__ 3mw n(l-iw) 3n(l—iw) 7(3~iw) { 7(1-3ie)
e Ak e &

I = ey cosh(mmw/2) - 7w fo = mw(2m? —1) + sinh(7w)
W b -2coshm) " J2bcoshimoy bsinh(rw)
7(1— 2%) + sinh(7w) e
Ly = LYz = ;
20 36 sinh(zw) v Lz

where y(z) denotes the derivative of the natural logarithm of the function I'(z).
In equation (11) the term /(7)) is defined by the formula

1(1g) =—-Fy j yo(n)Sgn(w,)dr =2F, sz%ﬂs—g%—)). (13)
where z,, are the roots of the equation
@, (t,) =0, +{; sinlo@, +1:D))— Yoltn)=0, (14)

and @, (1) = & cos(@( +74) )= xo () + bx3 (1) .
If the Melnikov function (11) changes sign, then one may expect an occurrence of chaos.

The Melnikov function is further analysed in more detail. Observe that for large values of the
parameter b and small values {, we obtain I(7;) = 0. In addition, the remaining terms in (11) are
small and do not change the Melnikov function sign. Beginning from a certain threshold value ¢,
the integral 7(ry)# 0 and it starts to play a dominant role in M(zy) . Therefore, the function
M (z,) starts to change its sign, when the function /() is not equal to zero, which means that the
function @, (r) changes its sign. This observation yields the following formula for ¢ estimation:

Ch=o-1/2b. (15)

To check a reliability of ad hoc formulated estimation (15) the numerical calculations have
been carried out and the following parameters have been fixed: b=9, £=0.1, =2, o, =04,

Fy =03, a=0.3, §=03. The function M(tp) changes its sign for {, =~ 0.168, whereas the
value obtained using formula (15) is equal to {, =0.164.

IV. NUMERICAL ANALYSIS
The numerical analysis of the equation (1) without tribological processes (y =0, k, =0)

has been carried out. Poincaré sections and phase trajectories are shown in Figure 3(a). For
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£, =0.165 points 1 correspond to period — 6 motion, whereas chaos is reported for {; =0.2

(points 2)- It is clearly seen that a chaotic distribution of the Poincaré points is located in the
vicinity of the homoclinic orbit (9). The points located on the surface (x,y) are separated in
time step equal to the period of kinematic excitation nfw.
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Fig.3 Poincaré section of the bush (I - £, =0165, y=0: k, =02~ g* =0.2. y=0, £, =0;3-§, =02,
y=20,k =0;4-¢, =0.2,y=20, k, = 0.1; dashed curves corresponds to the homoclinic orbit).

V. CONCLUSIONS

The frictional heat generation does not change qualitatively the detected chaotic motion for
the considered shaft velocity (see points 3 in Figure 3(b)). Both contact pressure and
temperature oscillate also chaotically. However, the threshold of chaos occurrence

decreases. Wear, after some time, leads to achievement of zero value contact pressure. The
bush movement is represented by the points 4 (see Figure 3(b)).
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