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Introduction

One dimensional siationanv waves appearing n one dimensiopal continuous svsiems
(communicagon lines), or flat waves (for instance, solitons on water governed by Kortweg de
Vries equanon) belong to well smdied. On the other hand, it is clear that solitons creaied on
water, on a falling down fiuid laver, and lonic-sound solitons in piasma should depend on wo
snaua] co-ordinates. A simple model is given by kadomtscx and Petrashvilli {1]. which is
generalization of the Kormweg de Vriss equation.

As it has been menvoned in reference {2], the particularity of Jupiter ammosphere is expressed
Dy its great red giow, the so called rwo dimensional Rossby soliton. The Rossby waves in a linear
approximaton cormespond 10 waves appearmg in rotanng amnosphere, and the main reason of its
cxisience dcpends on a change (with 2 latitude) of a horizontal projecton of the Coriolis force.

For a medium with d.tssmanon the Chochleva-Zabolotskij equation plavs a representative role o
cescribe the occurring waves [3]. However, in a case of thin flexible plates within the kinemnatric

Kirchnoff's model the solitors are not detected vet and we ars going w illustrate and anaivss this
behaviour.

Forced oscillations of flexibiz plates with & longitudinal, nme dependent load, actng on one
piate side are investgated in this report. Regular (harmonic, subharmonic and quasi-periodic} and
ureguiar (chaotic) oscillaiions appear depending on the svstem parameters as well as initial and
boundany conditions. In order 1o achieve highly reiiable resulis, an effective algorithm has been
applied 1o conven a probiem of finding solutions to the hvbrid tvpe pardal differential equabons
{the von Karman form) to thal of the ordinan differential eguatons (ODEs) and algebraic
equatons (AEs). The obtained equations are solved using finne difference method with the
zpproximanons O(h') in respeci to the spatial co-ordinates. The ODEs are solved using the
Runge-Kuna fourth order method, whersas the AEs are solved using either the Gauss or
reiaxanon methods. The analysis and identification of spatial-temporal oscillations is carried out
by investganon of the senes wyll), wy;t), phase porraits wiy(wy) and we;(We, Wy) and the mode
vorraits in the planes wyiwg). wy{w;) and in the space wedwyy wi), FFT as well as the
Poincaré sections and pseudo-sectons.

Equations, Initial and Boundary Conditions

The known equanons govermning dinarmes of flexible isotropic plates are taken as the
mathematcal model. The platz material is elastic and both Hook's and Kirchboff's bypotheses are
valid. A plate is thin &nd the hvpothesis on an average deflection holds. The known von Karman
egquavons [4) sanisfy the listed hypotheses, which have the form
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where w(x, v, t) is a deflection funciion along z co-ordinate onented toward the Earth centre, and
F{x, v, t} is the Airv's funcrion.
The following reladons berwesn dimensionel and non-dimensional quantides bold
" x=max, v =b§, w=2Hw, l:%, t=tE, s=(2H);,
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The equaticos (1) are already mansformed 10 the non-dimensional form (variables with bars
are non-dimensional and they are omitad in (1)).

The following notadon is used: P(v, t}- longitudinal load along Ox axis, 2H - plate thickuess;
a, b - plaie dimensions; =- damping; E - Young modulus; v- Poisson coefficient (dunng
cajcuiatons v=03 has been taken); a low left comer of a plate serves for a co-ordinate sysiem
Oxy. The plate volume Gefx, vi0sxs] 0sv<l}, ~-H<z<H. The Airy's funcdon sadsfies

the foliowing reladons:
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where: Ty, Ty and Ty are the swesses occurring in the middle plate surface, and L{w, F) is the
known non-linear operatcr,

Loosely clamped edge on unsweiched in tangendal plane ribs is used as the boundarv condition:
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The inigel condidons must satisfv the boundary conditions (3) and they read

wi,,=Asin’ msin® =y, A-const,
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Results
The method.of finite differzpees with the spatial approximation of O(h*) order is applied to reduce
a dimension of the PDEs by a projection to ODEs. This approach is used 1o smdy standing and
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moving waves in space occupied by a thin plate subjected to one sided periodic longimdinal load
acuon.

The boundary and initial condinons (3) end (4) are applied, and the mesh space Gy has been
fullv used without symmetry conditions. The spatal step of h=1/16 and the time step At =2-]0~
have been waken. .

We take Py as conwul parameter, and the other parameters. are  fixed:
0=1047, A=e=] v=023. The deflections w(0.5, 0.5, t}, phase ponraits, Poincar¢ maps and
FFT arc analvsed for different values of Po. Beginning with P, 216, the analysed mechanical
svstem is in a chaotc state, and the series of transinons between symmetric and non-symmetnic
oscillation forms are cbserved.

Further, our attention will be focused on interval P, €[18.95;19.25]. In this interval an
oscillaton jump is observed, which results in a change of spatial-time dvnamical state
configuration, and an occuwrrence of standing and moving waves. For Pe=19 the fundamental
characteristics are reporied in Figure 1. The plate oscillations before a jump are chaotic, which
indicats the presented characteristics. The bending moving waves and maximal deflections for
rwo ssif perpendicular svmmemy axes are observed. The described behaviour, referted to as
moving waves, reach a standing weve, and then a jump to another deflection level occurs, which
is indicated by all characteristics given in Figure 1. In the plate ceatre the mentoned discontmuiry
effect is observed in the phase and modal portraits. Space phase and modal portraits and their
projectdons into the planes show that chaos occurs (se¢ broadband character of the power
spectrumy). But a collapse of the standing waves beginning from t=10.04; Po=5 doss not appear, as
it has been observed for many other parameters. A new type of wave seiforganizaton oceurs, Le,
the standing wave. This wave type does not change in time and is practicallv stable over
t€[10.04;100] . This observdrion leads o conclusion, that within 2 chaos state a new
selforganized behaviouf appears called two-dimensional standing wave (soliton).

For Py>19.25 the solitons as well jump phenomena do not appear. The travelling waves and
regular oscillauons are observed instead for 1€ {48;100] .

Conclusions

The von Karmén form of equations governing dvnamjcs of flexible plates harmonically excited

are analysed. The system is very interesting from a point of view of non-linear dynamical systems

because it possesses an infinite dimension. A special difference algorithm is used w reduce the

von KArmén partial differential equations to a set of ordinery differential and algebraic equations.
This subtle numerical technique applied allowed to detect both chaotic and selforganized

soliton states.
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Fig. 1. Time histones of w(t), wi(t), Pomcare pseudosections, modal pormaits, power spectra and
11

spaual configuradons for the given time moments and intervals (w,, (t) = J j wix, vy, dxav).
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