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Abstract: We present a special class of mechanical systems with friction modelling
surface grinder feed drive systems. We recall the general frame for the study of such
models. Results of existence and uniqueness are given. Then numerical results
obtained via different analytical expressions of the friction force are presented.

1. Introduction

An anabysis of the vibrations of material system relies the most often on the studving of the
solutions of a differential equation of vibrations. Generally, the difficult thing is to find a
mathematical {anaiytical) expression of the solution ieading to the exact solution at least in a
numerical point of view (i.c. leading to an approximation with an arbitrary high accuracy if exact
mathematical expression can not be obtained). In many cases such an expression is unknown and
numerical schemes have to be used. Generally, the following groups of methods used in order to
analyse the vibrations 8] can be distinguished: methods based on expressions of the exact solutions,
the topological methods, appreached trace and trace-analytical methods, approached analytical
methods, analogical methods, experimental methods.

That analysis can be realized when the exact solution of the system of differential equations
describing the motion is explicitly known. Those exact solutions are well known in the case of
systems of linear ordinary differential equations. In the case of numerical methods, approximated
solutions of the system of differential equations with initial conditions is constructed recursively,

point after point. Such processes provides the solution with 2 high accuracy but does not permit a
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priori qualitative or quantitative study of the effect of the different parameters: only a lot of
simulations lead to conclusions. Nevertheless in rnany casesx, numerical methods are the only ones
that can be used. Even in the case of non smooth systems {including friction or impacts), it is difficult
to generalize known methods or to build appropriate methods (6], [7]. Even if sophisticated methods
are available to sclve the models based on differential inclusions, identification of the paramcters of
the systemn from experiments could be a difficult task. This is why, models have to be carefuily
studied in order to keep only the needed and simpiest terts in the models. Here, we first present the
physical models in the Section 2. Exact or approximate expressions of the friction force are proposed.
The exact model does not possess exact analytical solutions, Numerical methods are needed. The
Section 3 is devoted to existence and uniqueness results. The mathematical frame is recalled and can
be used in the Section 4 in order to build numerical schemes. Then in the Section 5, numerical results
are provided. Several models are tested: especially we consider a simplified linear model of the
friction force and we cormpare the obtained resuits of the exact model and the approximated model.

1. The phyzical models

A physical model of surface grinder feed-drive system takes into consideration. The table of the
machine tool is moved along direct contact cast iron slideways and powered by a fluid drive. This
motjon is realised for small linear velocity of the table, which corresﬁbnd with the conditions of
creep-feed grinding. The physical model {1], [2] of that system is presented in the Figure 1.
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Fig. 1. Physical model of surface grinder feed-drive system.

An experimental characteristic curve of sliding friction is presented in the Figure 2.
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Fig. 2. Experimental characteristic of sliding force friction.

The physical model of the surface grinder feed-drive system is described with mathematical models.
We propose two mathematical models for the present analysis. The first one is written in the form:
mi+ f{x 5,80+ Fie($)+ f{)> 0, m
and the second one in the fornx:
mi+ flx, %1+ e’ + F(De()+ (1) 20, 2
where the smooth linear part of the model is expressed by:
Sleit)=ci+h,
and the friction force is given by the formula: F{%)o(x).
‘This formula is first detailed in the form:

1)- F()o(x)= 1+§Gﬂi sgn(x) circumscribing decreasing part of friction function Fi (x)o-(x)
L

on [0, v;], with constants A, = 0.23, B = 1.033, and maximal velocity v;. Then a linear approximation
could be given for the decreasing part of friction function £ (x)a(x) on [0, vgl:

2)- F(z)o(t)= F,{1- 4,B%)sgn(x).

The external solicitation is an harmonic force given by: f(#) = fcos{u+ @) .

¢ is the damnping coefficient of power unit, % is the stiffness of power unit.
o’ provides a non linear model of the Duffing type.

3. Existence and uniqueness results

We observe that all the models introduced in section 2, ¢an be subsumed under one form which is
conveniently described in the language of maximal monotone operators [3], {5].

In general case we can write: F(z)= G(z)+ 4(z) 3
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with G(z) Lipschitz continuous function so that:

{z s0 G(z)== Fl-z)+24,

220 Glz)=F(z) @

0 if z»0
and Alz)}=1[-24,0] if z=0 is the maximal monotone graph.

~24, if 2«0
So, problem (1) is equivalent to: mi+ f{x, 1)+ G(£)+ 4()30 5]
We can write:

{mi, + ey, 3, 04+ Glx )+ Alx )50

*2 =4

fs YN ,

. {Jz‘ e AN N

()

£,-x,30 ®
it means: X {x‘;] and
X+F(X,0)+A(X)2 (g} : : _ ®
with F:(x,:)a[ﬁ[f(’“”‘"‘)* Gl )]} | (10)
-x,
4. The numerical schemes

The mathernatical tools introduced in the Section 3 permit us to build numerica! schemes. Let us first
write the model in the form: '

{"&1+f(x‘ﬂ'xlll)+6(xl)+d(xl) ()
=% _

i x . -'I;f(xbI!!t)+-5"6(xl)+-1,;'d(xl) 3[0] (12.)
dr\x, —x, 0

These equations are denoted:

X+ F(X,0)+ A(X)>0 (13)
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and the first numerical scheme is obtained with:

E-Z_X-w(x_,:,)m(x)am a0
sothar X, =([+aA)'[X, - AF(X,,2,)] (15
with: F(X,1)= [2((2?)] and the maximal monotone operator A(X)= [:(x‘ )]

The calculation of (I + ArA)"(Z) is easy according to the figure 4 zand 4 b:

Then we have;

b2 % »=z
1+ AcA = <> 16
( * {yl) (ZJ {)'i = (Idn +AIA)~1(Z,) a8
Hence: y, =1+ AAY'(z,) an

a) b

1 2= (e 0 ) yrO+AtAN (2, )
Y -2F4 Z,
~2E4t

Figure 4 a: The graph (I + At A); b: Inversion of the graph (1+ At A).

Then, introducing %= v , the numerical scheme of Euler (with implicit term only inside the maximal

monotone graph: semi-implicit Buler scheme) becomes:

m v"“A: Yut flx, vt )+ G )+ Ay, )20

18
xnﬂ. -XI‘ = V. ( )
At
x,,=x,+Atv, (explicit Euler)
(idk +£_{AJ(va¢l)= V. —-.Aif(x“v",jn)—i‘i(;(v') (19)
m m m
Ko =3, + APV, ’ 20)
aux =~ flz,,5,,0,)- 22 G,) (a1
m m
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—2F M 2F At

if aux § ——=— then v,,, = aux +—2— 22
m m
if 225 x50 then v, =0 3
m
if aux >0 then v, =aux (24)

For this numerical scheme we are able to prove the convergence [4] of the discrete functions defined
by v, . x, to the exact solution with order 1 when At tends to 0. The main advantage of this scheme is
the following one:

- itis not necessary to approximate the time of “phase change” (stck, slip, etc..)

= when At=4, the approximate solution converge to the exact one together with approximated

“phase change” times.

Another numerical scheme can be built using classical approximations (from mathematical or
physical point of view). It is given by second order approximation of the accelerarion by

= In-rl X

2M

2 atemn (i 2 o BB oo )

that provides:

wnﬂ

(25)

Id+:‘.‘_A WM)=_-xp-|-xn _Al_ I'.IK-I'H ,f. _A‘_ X, =X (27)
2m mAL 2m A m At
50:
Kpy — X, At X, = I Ar X ~x
ifauxl=-mt —Te _ 2y Za" e 0 gl ia T e 28
’"th'ﬂ')zmg(m] @8
we have:
Fod
- = il e
if auxt s TAL ghen { e =2+ 29)
m X =X AW
. =0
if TA L aux1 50 then {'""' 60)
m Lo = Tpny

=aux]

if aux1>0 then {“’"‘ 61)

Xy = ¥,y +24%20ux1

We consider the second order initial problem (1) in the form (5} and we build the numerical scheme:

h: time step x,, &, =x,;x, given
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Xy = 21X, + X, Xy~ Xy X, =X Lo = Xnn
m + s Ao |+ +4 0
» ’{" h ] G( h ) [ 2 ]3 62

with explicit: ¢, )= i(’-)Lhi{&-l—) ifr,=1,_+h (33)
So we have with v, = Zrn —Za1 gng
2h
Ty T~ Xnt 2(xu—l X Xe = Xay X T Xa Lot~ Xy

Zm{——z}I =0 }+hf[x,,—-——h ,1]+h(?( 5 )+M( T )30. (34)
We solve
(2m+ Mxv.d).} 2"'[__2(1_»_2[’;-‘1,.._)]-" ﬁ}{x., X, ';'X..-l ,I]'FhG(x” —h-l'g—l) 30, (35)
It is equal to v,,, = (2m+ A4} (s,) : (36)
We obtain the detailed solution:

if 2 <24, * then (2m+ hd)” (z)=-ll;(z +248);

if zef- 24,40} then (2m+Ad)'(z)=0; <5}

if z>-0 then (2m+hA)"(z)=Lz.

2m

In the case of this second numerical scheme, no detailed proof have been made for convergence. But
we expect this scheme to be convergent and to have again order 1 because of its similarity with the

previous semi-implicit Euler scheme.

5. The numerical simulations
The numerical simulations were performed for two models describing by the equations (1) and (2).
We have obtained two numerical schemes for each model (1) and (2) with friction formula: exact

4,
1+ 4,B%

and approximate 4,1~ 4,Bx). Each equation was solved in two ways by using the explicit

and implicit scheme. Examples of the curves obtained are presented in the Figures 5 to 8, The Figure
5 shows the curves of displacernent and velocity for exact formula friction with the first scheme
{semi-implicit Euler scheme). We can denote t;=15s for first value 0 of the velocity. In the Figure 6
we can see stick — slip damping vibrations for exact formula friction with semi irmplicit Euler scherne,
The Figure 7 presents the results of the simulations for approximate formula friction with second
scheme. Tt is impossible to find exact analytica] solution for the model described with the equation (2)
including o' — Duffing function. The solution of numerical scheme shown in the Figure 5is
according to the analytical solution of problem (1), so in first step, we can apply this numerical
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schemne to solve problem (2). The result of the simulation for approximate formula friction with
implicit is presented in the Figure 8.
6. Conclusions

We examined two types of models including exact and approximate formula friction. We used
classical results in order to prove existence and uniqueness of soutions to this class of problems.
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Fig. 5. The curves of displacement and velocity for exact formula friction with explicit by ¢= 0.01,
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Fig. 6. The curves of displacement and velocity for exact formula friction with explicit by ¢= 0.1,
k=1, £=1, v=1, ¢=0, x;=0, vi=0, 7= 0, Nigpa~10000, trez=100
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Fig. 7. The curves of displacement and velocity for approximate formula friction with implicit by
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Fig. 8. The curves of displacement and velocity for approximate formula friction with implicit by
o= 0.1, k=1, £=10, v=1, =0, a=1, x=0.1, v¢=0, t&= 0, Ngu=10000, tp,,~100
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We have built numerical schemes with explicit and implicit which approximate these solutions. For
the usual physical value of velocities occurring in the surface grinder process, we can see from
numerical results that the linear approximation could provide enough accuracy. So. it will be
interested toprepare the calculation of exact analytical solutions of model (1) and linear
approximation of friction force. In the case of the model {2), the numerical solutions are valid, but
only analytical approximations of the solutions could be obtained with different value of a, and weak
non linearities.

The comparison between analytical approximations and exact numerical results will decide if one can
keep only analytical resalution of the problem.
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