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The miain problem is paﬁicularly important from a practical application point of view [1]. To
solve it various numerical [1], matrix algorithms [2] as well as nonsmooth functions approach [3] are
used. In a case of large number of periodical nonhomogenities very promising seems to be averaging
method, which has been clearly demonstrated using examples of bending of plates with attenuations
[4-7]. In this work we consider an averaging of an in-plane problem of elasticity for plates with
periodical attenuations. Our considerations are within a frame of simple scheme described in
references [8-19].
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Figure 1.
1. We consider first longitudinal oscillations of a rod composed of linked sequence of elements with

different characteristics (see Figure 1). Two neighbourhood rod’s elements motions are governed by

the following equations:
(EF);'U-;:,:, ~(PF); Uy = filx 1) i=12, (L.1)

where f;(x.t) define the forces acting on the rod’s clements.
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The following coupling condition between the neighborhood parts holds:

U=, T,=T, on the contact (1.2)
where: T; = (EF)iUix|’ i=12

We transform the relations (1.1), (1.2) to the following form:

Ve = Ui = @i(01), =12, (1.3)

U =U,; U, =gU, onthe contact (1.4)

where: p; = L’p,/E;; @, = L f(x,)/ E;; x=x,/L (see Figure 1); & = (EF),/(EF),.

Observe that the analysed object periodicity is characterized by parameter €. As € one can take a
ratio of a length [ of periodical part to length of a whole rod L (see Figure 1), or a ratio of [ to a
characteristic period of external load, and so on. We take e = ¢/L and we use two-scale method by
introducing fast ¢ = x/& and slow x variable, respectively, Therefore, we have
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A typical periodically appearing cell is shown in Figure 2. The being sought functions U; are

represented by the series:
U, =Ug(e)+ UM (L E0) + €50 P (0, E )+ =12, (1.6)

where: UP(x,En=UP (x,E+10); i=12; k=12,.; the parameters @; depend on a solution
changes.

Observe that in the consider system three key parameters €, €, and pu appear. First of them is
small in comparison to two other and consequently it can serve as a basis for an order estimation of
other parameters. The averaged relations can be only obtained for fully defined relations between
parameters, We introduce parameters (3, /4, and f, together with the parameters «,,c, using the

formulas:

g~ el (1-g)~ P ueB (- )~ 5. (1.7)
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A choice of the parameters of asymptotic integrations o, 5, (i =1,2,;k =1+4) is carried out

using a routine but, in general, a tedious procedure [20-23]. In result we obtain two following

fundamental cases:
a) ay=a,=2, B,=0, f, =1, fy=,0,=0. The choice of the parameters corresponds to rods
with approximately similar length and similar characteristics.

Dynamics of acell 0 <& <1 is governed in the first approximation by the equation:

%=A;(U0). i=12; (1.8)
for E=gp U =ULY; (1.9)
U =eU8) - (-6, (1.10)
U)o = U8 g (1.11)

U)o =60

£e0~(1-6)U . (1.12)

where: A;(Uy)=¢,-U, . +oU

ot

The conditions (1.11) and (1.12) are yielded by the periodicity condition (1.7).
Integrating (1.8) gives:

UM =P, +CP(xHE+0.5AE%,i=12. (1.13)
A solvability condition in relation to constants C{* is obtained after a substitution of solution

(1.13) to relations (1.9)-(1.12), and it is governed by the following averaged equation:

Ap+e(l-)A, =0. (1.14)

Observe that, from a physical point of view this equation corresponds to averaging of parameters
due to the Voight approach,
The relations (1.9)-(1.12) yield only the difference C{" —C}", and we take arbitrary C{¥ =0.

Other parameters are defined as follows:

C](n :Céz) +0.5A2;
C[LZ) =5I(C’§2) +A2)—(1‘“‘£|)U{“; (1.15)

co o AT+ A28 - p) ~ (- 8)ul
’ Aull-€)-1)
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Now we briefly discuss a question of boundary conditions satistaction. Assume, for example,
that we have U = 0 for x = 0; 1. Then the following interpretation can be given: the considered system
is represented by an averaged rod, whereas a real structure holds in rod’s ends neighborhood
(Figure 3). This problem can be solved, for example, using matrices approach [24].
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Figure 2.
b) o =3a,=1,8=15,=0,0=0p0,=1. This case corresponds to one of the most

important for practice, i. e. when weak short additives separate long stiff elements [1].

A solution to the cell problem yields the following averaged equation:

AUy)=0, (1.16)
and the *fast’ improvement:

U =U,(1-¢). (1.17)

2. Now we consider in-plane problem of theory of elasticity. It can be formulated within full
equations of elasticity theory, as it was done in reference [1]. However, we use a different approach.

The simplified relations of in-plane theory of elasticity are used to solve a sequence of
harmonical problems instead of bi-harmonical one [8-19].

The following simple physical scheme can be used (Figure 4). The load P(x) causes a plate
deformation in OY direction, and therefore the fundamental deformation is refated to V (one can
neglect other one, i. e. U = 0). Similarly, for Q(y) one can take V = 0.

The similar like computational schemes have been widely applied by engineers in airplanes and
rockets constructions 8, 9]. Furthermore, after some modifications it has been also successfully
applied to theory of composites [10-13]. A similar like simplifications have been also applied in

references [14, 15].
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The drawbacks of this partly empirical engineering approach are clear: possibility to increase the
exactness of the results or difficulties to formulate a boundary value problem. It has been shown
firstly in reference [16] that one can use either a ratio of stiffness in two main directions of strongly
anisotropic materials or a ratio of rotational stiffness and one of a stretching-compressing stiffness as
a small parameter. Using those approaches many important behaviours have been explained including
that of singular character of asymptotics, as well as the initial biharmonic equation can be reduced to
two Laplace equations coupled via boundary conditions, which allows to use theory of potential. In
addition, a splitting of boundary conditions as well higher order approximations are constructed {17].
Besides, it has been shown that for an isotropic case (mostly unsuitable for asymptotics) an error
introduced by first approximation is small [17]. Some mathematical aspects of the introduced
asymptotics are analysed in references (18, 19]). The above discussion force us to consider an
averaging procedure within a frame of Laplace equation.

The analysed initial problem is shown in Figure 5. The full equations governing in-plane

orthotropic elasticity have the form:

B, +GPU, , +(BIWO +GOW, ol = [i(x, vtk

(1) O] hy,H (i) . 2.0
B ny,y, +G Vulx +(B +G )Uum ;O.‘V;'g, = F,'(-"]s)/p!);i =12
with the attached contact continuation relations:
=U,;, V=V,
T‘” =T®; Tm T®. (2.2)
&y

where:

T =80W, +v"V, %
@) _ o
79 =GVW, +V, ), i=12.
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; ; (6]
We introduce the following ‘small’ parameters L-=G%;(n and we assume
1

B~ BV v oy =12 k=12,

After asymptotical splitting in relation to y; the following Laplace equations and continuation

conditions are obtained:

BlmUix,x, "'G“]Ur‘y.y. =P = ik, 1) @3
U,=U,; B"U,, =BU,, onacontact, (2.4)
BY Vi + G WVig = PVis = Fix y0); @.5)
V,=Vy G, =G™V,,  onacontact. (2.6)

The averaging procedure of the problem (2.4), (2.5) can be carried out using Voight approach

and leads to the result

BZVOylyl +GVDx,x| "PVQ,, = Fi(xl'ylvf) * (2-7)
where:
BYe, + B¢, GV, +6%¢, Bt +D,¢ F 0 +F, 1,
Bz=_le_ ..;Gz g : =1 f-Z;FZIlB._..;

In order to analyse a boundary value problem (2.3), (2.4) we use nondimensional quantities
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Ux'.\:x +Z1Uly_v _piUil[ :qoi(x' _)’.l') »

Uy =UyU,, =€gl,, onacontact. (2.8)

where; p; =B L' 1B, o, = [L2EBY = x bLy y= 3 /L: & = BB BN,

Observe that the problem governed by (2.8) is identical to that of the earlier discussed rod. All of

the earlier results hold if

AW =@, —Up = XUy + DU, -

For elements with similar stiffness and length the relations (1.13)-(1.15) hold, whereas for short

and weak junctions the relations (1.16), (1.17) are valid.
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