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ABSTRACT

In this work the triple pendulum with damping, external
forcing and with impacts is investigated. The extension of a
coefficient restitution rule and a special transition condition rule
for perturbation (linearized system in the Lyapunov exponents
algorithm) in each discontinuity point are applied. Periodic,
quasi-periodic, chaotic and hyperchaotic motions are observed
using Poincaré maps and bifurcational diagrams, which are
verified by the Lyapunov exponents. In additon basins of
attraction of some coexisting regular and irregular attractors are
illustrated and discussed.

1 INTRODUCTION .

A pendulum plays a very important role in mechanics since
many interesting non-linear dynamical behaviour can be
illustrated and analysed using this system (Acheson and Mullin,
1993; Bishop and Clifford, 1996; Skeledon 1994; Yagasaki
1994). Even simple pendulum externally excited can exhibit
periodic, quasi-periodic and chaotic dynamics. It is obvious that
coupled pendulums with obstacles can serve as a model even
for a very complicated behaviour including that of energy
pumped to the model, a various amount of resonances, jumps
between different system states, various continuous and
discontinuous bifurcations, etc.

2 INVESTIGATED PENDULUM AND GOVERNING
EQUATIONS WITHOUT IMPACTS
Three joined physical pendulums in the global co-ordinate
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Figure 1.  The investigated triple pendulum.

system x,y,z (with origin in point (O ) are presented in
Figure 1.
A local co-ordinate system x,,y,,,z., formed by principal

central co-ordinate axes is attached to each of the i-th link. It is
assumed that the links are absolute stiff bodies moving in a
vacuum and coupled by viscous damping with the coefficients
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¢, (i=1,2,3). The first body*is excited by harmonic action
g,cos@r, where 7 denotes time. In addition it has been

assumed, that :

a) the mass centres of the links lie on the lines including the
joints Q,;

b) one of the principal central axes of each link (z) is

perpendicular to a movement plane of the pendulum ;
¢) one of the principal central axes of each link ( y,, ) overlaps

with a line including the pendulum axes O,.
The introduced assumptions result in getting symmetric

gystem.
The system position is defined by the angles y, and the

folowing generalized-coordinate vector have been chosen

¥
V=1 ¥, M
¥V,

The governing differential equations of systems without
impacts have the following non-dimensional form

M-W+B-y*+C-y+D=F, 4 )
where

W, W v,
W= it =02 =18, &)
.2 .

74 3 [ 4]

M is the 3x3 inertia matrix with the elements

my =1, my =, my, = py;

my, =y, =V cos(y, ~ ;)

myy = my, =V, cos(¥, — ) @
My = my =V, cos(y, —¥,)

B is the 3x3 matrix with the elements

b, =b22 =b;; =0,
b, ==b, =vy Sin(% - Vz)’
by =—b;, =V,,sin(y, -v,)> &)

by =~by =Vy Sin('/’z 4 ),

C is the 3x3 matrix of damping coefficients

ate, -—¢ 0
C=| —-¢, g+t —¢) ©
0 —C; G

D is the following vector

siny;
D={siny, ;> M

siny,

and F is the vector of time-depending external excitations
of the form

q, cos(a),t
F= 0 . ®

The relations between dimensional and non-dimensional
parameters are as follows

B, B,
IHZ Bl ’ ﬁS B1 ’
M, M,
LN Oy ©
#2 Ml #3 Ml )
KK K,
I_Bl’ Z_Bn,xa—Bl ’
N N, N,
Viz =—#’ 13 =?13" Vas =_Bl3_’
1 1 1
¢ C, c,
6 =2t=1c, =2 =g, =2 (10)
M,B, M, B, M, B,
and
ql =—qM‘L‘) (11)
1
where
B, =J, +ey12ml +l,2(ml +m2),
B,=J, +e,'m +1,’m;, 12)
B,=J, +ey32m3 s
M, =mg e, +(m2 +m3)g 1
M,=mge, +mgl,, 13)

M, =mg €,
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K =J,—J,+e, m+12(m +m,),
K=J,-J, +ey22m2 +1,%m,, (14)

_ 2
K3 _JXS—Jy3 +ey3 m3,

Ny, =mye, ] +mll,
Ny, =meyl, s)

Ny =myel, -

Above J_.J .,J, (i=123) denote the appropriate

xisY yis
principal inertia momenta and m, (i =1,2,3) denote the
appropriate masses. The relations between real and non-
dimensional time has the form

t=a,7, (16)
where: 2 =£.
. 1
The relations between derivatives with respect to real and

non-dimensional time have the forms

dy, dy, .
dT 1 dt 1'/’1 )
d*y, d’y, . ;
G S g = w e i=123
o, =00, . (18)

Observe that the introduction of the non-dimensional form
of the governing equations has decreased the number of
parameters (from 23 real parameters to 16 non-dimensional
ones). Moreover the non-dimensional equations may govern not
only our system of triple pendulum, but also others similar like
systems (Bayly and Virgin, 1992; Heng et al. 1994).

3 INTRODUCTION OF THE OBSTACLES TO THE
SYSTEM
When in the investigated system the physical rigid
obstacles appear, the governing equations can be written as
follows:

M- y+B-y*+C-y+D=F,

h(y)20, (i=1,...,n), 19
where the inequality 4,(y)>0 represents an unilateral
~ constraint that is imposed on the position of the system, and 7

is the number of constraints (obstacles).
Since the investigated system (19) is a Lagrangian system,
it can be represented as a point moving in its configuration

space . Now, it is natural to apply the contact-impacts rules

using this representation. More clearly, the unilateral constraints
define domains of the configuration space, and the point
representing the system strikes the boundaries of these domains.
At the times of these ,generalized” collisions, one needs to
apply additional informations (the restitution rules) in order to
calculate the post-impact velocities.

The shock dynamics equations are as follows (Brogliato,
1999):

M(y)-0,=p,. (20)

where M(y) is the inertia matrix (4), p, is the generalized

percussion vector for coordinates y (the force impulse vector
due to the impact), and

v -y
Oy =7 —V; ¢’ @1
vy -vs

where y7 are the velocities just before impact (due to the time
t;) and yr’ are the post-impact velocities (due to the time ¢, ),
where ¢, denotes the impact time.

For frictionless constraints (as we now assume for further
consideration) p, is defined along V o (y) (because the

interaction force due to the impact takes place along an
Euclidean normal to the surface #,(y) =0, which results from

the virtual work principle).
Since we know the direction of p,» We can obtain three

algebraic equations versus four unknowns from equations (21).
In (Brogliato, 1999), the extension of Newton’s rule
(restitution coeficient rule) to more than one degree-of-freedom
systems is considered. It is shown that for a Lagrangian system
with generalized coordinates y, with a frictionless unilateral

constraint /,(y)>0, the only possible rule is to apply
Newton’s restitution rule to the component of s along
Vv h,(y), which reads:

n;.y’/ =_en;.u'/', (22)

Veh(w
(n = 1

. HV“’hi( W)"

restitution coefficient), and then to calculate the remaining
postimpact velocity components using the shock dynamics
equations (20)

is the unitary normal vector, and e is the
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AR
tyy My)-1y; =y =0
v -5 |
vy =)
ty2 - My)-{¥5 -7 =0 23
vy -V |

where ¢, and t,, are the tangent unitary vectors chosen as
mutually independent, ie.r), -V h(y)=0, t;, -V h(y)=0
and t;,l 1,,=0.

Any other rule is just a consequence of that, plus Newton’s
law of an action-reaction.

It can be also shown, that for a restitution coefficient e =1,
the kinetic energy change due to the impact is equal to zero.

From the equations (23) one realizes that in general there
exist a discontinuity in the tangential velocity due to inertia
coupling,

4 CALCULATION OF THE LYAPUNOV EXPONENTS
The fourth order Runge-Kutta method with detection of each
point of an impact with an arbitrary precision has been used to
integrate the obtained system of ordinary differential equations.
In each impact point the system state has been transformed
using equations (22) and (23).

The Lyapunov exponents have been computated directly
from the differential equations using well known algorithm
(Wolf et al., 1985). Because of discontinuities, a linearized
system which represents the motion perturbation have been
transformed (Miiller, 1995) in each point of a discontiniuty
using special rules. ,

Let x denotes the state vector of the system, i.e.:

x" =y, Vs Was Vo, Vs, Vs, ], (24)
then the equations (2) can be written in the following form
x= f(x(t))- (25)

The time evaluation of the tangent vector J&x(r) at x(¢) is
represented by the linearized equation (25)

& = F(t)&x(t), » (26)
where:
. F(r)= Qf(_: . @7
Ox’ =)

The spectrum of the Lyapunov exponents A, (i=1,..,7 for our

7-dimensional dynamical system) is given for seven different
linearly independent initial conditions &, (z,)

A= limllnm . 28)
Bar I A0 |
X A _
x(?) )
ox*
ox~ — X0
x(1)
T~

ot T~ h(x)=0
t 7 3

Figure 2.  Undisturbed and disturbed motion.

When the nonlinear system at =y, reaches the discontinuity
point (see Figure 2) indicated by A(x(r;))=0, then the state
vector x(t) is transformed by the relation

x(t; )= g(x(e; ), (29)

where g(x) in our case is given by (22) and (23).
The disturbed motion x(z) is defined by

()= x(t)+ &(1), 30)
and it encouters a discontinuity at the time 7,
I, =t,+6t. €2))

The transition condition for perturbation &(¢) is given in
(Miiller, 1995) and has the following form

& = G(x(t; ))é'x_ +

+{G(xley ) £l - £ (6l Do,

(32)

where:

5o HblE)E (33)

Hxle) 1l )
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Hix)= "%, (34)
(x) —

Glr)= 28X 35)
oxT

5 NUMERICAL EXAMPLES

A special simple case of the introduced system of coupled
physical pendulums will be further analysed. We consider only
three identical rods with damping, external excitation g, and

with the obstacle in the form of horizontal wall (Figure 3).

Figure 3. Three coupled rods with the obstacle.

The physical obstacle can be expressed in the following non-
dimensional form

h(y)=mn-cosy, 20,
hy(y)=n—(cosy, + A, cosy, ) 20, (36)
h(y)=1—(cosy, + 4, cosy, + 4, cosy, ) 20,
where:

A=k, g 2b, ok, (37

and /, is the real length of the i-th rod and # is the real position

of the horizontal wall.
For three identical rods we have

h=1 A=l (3%

and others non-dimensional parameters read

4 1
ﬂ2=7’ ﬂ3=7’
3 1
ﬂz =g, ﬂ3 =-g, (39)
4 1
Kl_ly X. =7’ K3 =7’
9 3 3
V12—1_4" V13=_12’ B=14

We present (see Figures 4-7) some numerically obtained
examples for three identical coupled rods with the physical
obstacle introduced in Figure 3.
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Figure 4.  Bifurcational diagram for (a) q, € (0.7500,0.7885) and (c)

q, € (0.7880,0.7885) ; three coexisting solutions (blue, green and red),
where Yoa denotes the third rod's end co-ordinate; and the

coresponding two largest Lyapunov exponents (b) (except of zero
exponent) corresponding to ‘blue’ solution.
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Figure 5. Basins of attraction (a) of two coexisting solutions
{corresponding to ¢, =0.75 in Figure 4) with the initial conditions:

Yi(t=00=0. y,(0)e (-7,7). y,(0)e (-7,7). ¥,(0)=1,(0)=
=y,(0)=0; phase trajectories (b,d) and Poincaré map (c); blue —
hyperchaotic solution, green — periodic one for ¢e (2000,2500)(b);
te(2:10°,10%) - 15597 points (c); e (100,125)(d)-

a Xoq

Figure 6. Basins of attraction (a) for three coexisting periodic
solutions (corresponding to q, =0.7885 in Figure 4); initial conditions

the same as in Figure 5; phase trajectories (b,c,d) for /e (5000,5050)
(b); te(100,125) - 15587 points (c); 1e (5000,5050)(d).

The following parameters are fixed: 7=2.5, e=1,
¢ =c,=c,;=0.1 and @ =1. The g, parameter has been
varied within the interval (0.75,0.7885) and the initial
conditions of the system are varied, too. In the considered
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interval three different solutions have been detected, and their
biffurcational histories are reported in Figure 4. The first one
(green) is always beeing periodic one and our pendulum motion
takes place without any impact. The pendulum omits the
obstacle (see Figure 5d and Figure 6c). The second solution
(red) is also periodic but with impacts (see Figure 6d), and it
vanishes for g, =0.788106 (see Figure 4c). The third periodic

solution (blue) is of most importance, since it undergoes a route
to hyperchaos when g, is decreased. For instance for

g, =0.7885it is periodic, whereas for g, =0.788232 it

bifurcates to quasi-periodic solution (see Figure 4c). The quasi-
periodic solution for g, =0.786 and its discontinuous Poincaré

section are shown in Figure 7.

A8

204

ny

0,05 4-

¥,

0,74 0.76 0,78

C) Wy
Figure 7.  Quasi-periodic solution (a — phase trajectory) corresponding
to ¢, =0.786 (see Figure 4) with the discountinuous Poincaré section

(bc) for £ (5000,5050)(a); r€ (5-10°,2-10*) (b.c).

A further decrease of g, causes a transition to chaos for
g, =0.7715 with a short periodic window. For ¢, =0.7700

again a relatively large periodic orbit domain occurs, which
dissapears for g, =0.7659. Then the hyperchaos occurs, which

is observed until the end of the considered interval of g,. The
hyperchaos is interrupted by narrow periodic windows for ¢, €

(0.7530,0.7543) and ¢, e (0.7566,0.7576), which with a high

probability include also quasi-periodic and chaotic intervals.
However, the latter ones are difficult distinguishable in Figure
6c.
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Figure 8. The first Lyapunov exponent for the solution shown in
Figure 5 b/c (hyperchaotic motion) for three different integral time steps:

h, =27/1000, h, =27 /400 and h, =27/200-

The corresponding Lyapunov exponents are shown in Table
1. The largest Lyapunov exponent corresponding to hyperchaos
for different integration steps has been reported in Figure 8.

Figure |S5b/c| 5d 6b 6c | 6d | 7ablc

M 0.06 0 0 0 0 0
A 0.01 | -0.010 | -0.0017 {-0.11|-0.14| 0.0000
A3 0 |-0.010 | -0.0017 | -0.11 | -0.28 | -0.0469

As -0.67| -0.25 | -0.0660 |-0.26 | -0.28 | -0.0470

As -0.94| -0.25 | -1.2626 |-0.26 | -0.28 | -1.2963

s -1.48( -1.69 | -1.7733 |-1.71 |-1.39 | -1.6679

A -2.10| -2.40 | -1.7733 |-2.29|-2.56 | -1.8376

Table 1.
solutions.

The lyapunov exponents A (i=1,...,7)for the analysed

6 CONCLUDING REMARKS

In this report we have analysed regular and irregular
dynamics of triple pendulum with damping, external excitations
and impacts and with physical obstacle in the form of horizontal
wall. The impact law for triple pendulum in the form of
generalized Newton’s rule has been introduced, and other
special transition conditions for disturbed motion in each
impact point have been applied.

Periodic, quasi-periodic and hyperchaotic motions have
been detected, discussed and illustrated. The basins of attraction
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for three coexisting periodic solutions have been reported, and a
transition to hyperchaos has been illustrated.
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