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ABSTRACT

In this work the triple pendulum with damping, external forcing and
with impacts is investigated. The extension of a coefficient
restitution rule and a special transition condition rule for
perturbation  (linearized system in the Lyapunov exponents
algorithm) in each discontinuity point are applied. Periodic, quasi-
periodic, chaotic and hyperchaotic motions are observed using
Poincaré maps and bifurcational diagrams, which are verified by the
Lyapunov exponents. In additon basins of attraction of some
coexisting regular and irregular attractors are illustrated and
discussed.

KEYWORDS: triple pendulum, quasi-periodicity, chaos, Poincaré map, coexisting
solutions, bifurcation.

INTRODUCTION

A pendulum plays a very important role in mechanics since many interesting non-linear
dynamical behaviour can be illustrated and analysed using this system (Acheson and Mullin,
1993; Bishop and Clifford, 1996; Skeledon 1994; Yagasaki 1994). Even simple pendulum
externally excited can exhibit periodic, quasi-periodic and chaotic dynamics. It is obvious
that coupled pendulums with obstacles can serve as a model even for a very complicated
behaviour including that of energy pumped to the model, a various amount of resonances,
Jjumps between different system states, various continuous and discontinuous bifurcations,
ete.

INVESTIGATED PENDULUM AND GOVERNING EQUATIONS WITHOUT
IMPACTS

Three joined physical pendulums in the global co-ordinate-system x,y,z (with origin in
point O,) are presented in Figure 1. A local co-ordinate system XeisYeiZe formed by
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principal central co-crdinate axes is attached to each of the i-th link. It is assumed that the

links are absolute stiff bodies moving in a vacuum and coupled by viscous damping with the

coefficients ¢; (i = 1.2,3). The first body is excited by harmenic action g, cos@,r, where r

denotes time. In addition it has been assumed, that :

a) the mass centres of the links lie on the lines including the joints O, ;

b) one of the principal central axes of each link (z,,) is perpendicular to a movement plane
of the pendulum ;

¢} one of the principal central axes of each link (y. ) overlaps with a line including the
pendulum axes 0.

The introduced assumptions result in getting svmmetric system.

-

Figure 1. The investigated wiple pendulum.

The governing differential equations of systems without impacts have the following non-
dimensional form

M y+By*+Cy+D=F,
(1)

where
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The relations between dimensional and non-dimensional parameters are as follows
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(5)
where
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B =y +eJ,13m, —Hf(m, +m1), B, =J, -‘re,'_::m3 +[2:m,, By=J, +e_r33m]’
M, =mge, +(m2 +m_\)g Ly My=mge,+mgl, M,=mge,,

K =Fy-Ja+e’m +[13(m1 +m2),K2 =Jy =T te, m +limy,
Ky=J,~ Jy: +8.\‘32m3’ ©)

Ny =me D +mll, No=me l, Ny =me I,

Above J_.,J
m, (1 = 1.2,3) denote the appropriate masses. The relations between real and non-

J., (1=123) denote the appropriate principal inertia momenta and

xisY yir

dimensional time has the form

t=ar,

%
2 M‘I

where: @,” = T
1

The relations between derivatives with respect to real and non-dimensional time have the
forms

di;zfi Cl'!b'!- p dg’f'/; 1d2¥’.‘ 2. . ~

T STy TWYL a e e may, i=12,
3

&, =a,w,.

Observe that the introduction of the non-dimensional form of the governing equations
has decreased the number of parameters (from 23 real parameters to 16 non-dimensional
ones). Moreover the non-dimensional equations may govern not only our system of triple
pendulum, but also others similar like systems (Bayly and Virgin, 1992; Heng et al. 1994).

INTRODUCTION OF THE OBSTACLES TO THE SYSTEM
When in the investigated system the physical rigid obstacles appear, the governing equations
can be written as follows:

M-g+B-y'+C-y+D=F,
R(w)z0, (i=1,..,n),
&)

where the inequality A,(w)= 0 represents an unilateral constraint that is imposed on the

position of the system, and » is the number of constraints (obstacles).

In (Brogliato, 1999), the extension of Newton’s rule (restitution coeficient rule) to more than -
one degree-of-freedom systems is considered. It is shown that for a Lagrangian system with
generalized coordinates y, with a frictionless unilateral constraint & (y) =0, the only
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possible rule is to apply Newton’s restitution rule to the component of ¢ along V 5 (w),
which reads: i

T e+ _ : e
m, W =—eR, Y,

(10)

YR s the unitary normal vector, and e is the restitution coefficient), and then to

[7ehcn]

calculate the remaining postimpact velocity components using the shock dynamics equations

g

vy -y DA

thy M(w)-qws —ys 0=0, 1], -M(y)-{y; ~¥; » =0,
v~ 2 )
13

where t,, and f , are the tangent umitary vectors chosen as mutgé[ly i.ndepen,dent,
e, -V h(w)=0,1,:V h(y)=0and ¢ -1 , =0.

NUMERICAL EXAMPLES

A special simple case of the introduced system of coupled physical pendulums will be
further analysed. We consider only three identical rods with damping, external excitation ¢,
and with the obstacle in the form of horizontal wall (Figure 2).

The physical obstacle can be expressed in the following non-dimensional form

ki (w)=n~cosy, 20,
by (w)=n~(cosy, + 4, cosy, )20, .

Ly
(@)=~ (cosy, + 4, cosy + 4, cosy )20, 1
where: J S s
4 I, h
=T =T =5
i 1 4 L I, : ¥
(13)

and /, is the real length of the i-th rod and # is the real position of the horizontal wall.

736



(8

Figure 2. Three coupled rods with the obstacle.

For three identical rods we have

A=l 4=1,
14
and others non-dimensional parameters read
4 1 3 1
P=g Bi=7: k=35 A=3
‘ ; - (F5) mropeiar s
; 4 1 9 MRy £ T
K =1, K2=7f Ks"?: Vi =

14’ -'>V13 S1aT Y T

The fourth order Runge-Kutta methed with det'ection of each point of an impact with an
arbitrary precision has been used to integrate the obtained system of ordinary differential
* equations. In each impact point the system state has been transformed using equations (10)
- and (11).

. The Lyapunov exponents have been computated directly from the differential equations
~using well known algorithm (Wolf et al., 1985). Because of discontinuities, a linearized
ystem which represents the perturbation motion, have been transformed (Miiller, 1995) in
each point of a discontiniuty using special rules.
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We present (see Figures 3-6) some numerically obtained examples for three identical
coupled rods with the physical obstacle introduced in Figure 2. The following parameters are
fixed: n=2.5, e=1, ¢, =c, =¢,=0.1 and w, =1. The g, parameter has been varied
within the interval (0.75,0.7885) and the initial conditions of the system are varied, too. In
the considered interval three different solutions have been detected, and their biffurcational
histories are reported in Figure 3.
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Figure 3.  Bifurcational diagram for (a) g, € (0.7500,0.7885) and (c) g, < (0.7880,0.7885);
three coexisting solutions (1, 2 and 3), where y,, denotes the third rod’s end co-ordinate; and the
coresponding two largest Lyapunov exponents (b) (except of zero exponent) corresponding to 3
solution.
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g

a) ’f: b) 1:3
Figure 4. Basins of attraction of two coexisting solutions (1 and 3) corresponding to g, =0.75 (a)
and three coexisting solutions (1,2 and 3 but 2 is almost not seen because of very small area of
existing) corresponding to ¢, =0.7885 (b); the initial conditiens: v, (t=0)=0, y,(0) e (~7z,7),
Vs (0) & (-m,7), §,(0) =1, (0) =,(0) = 0.
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Figure 5. Solutions corresponding to ¢, = 0.75 (a,b,c) and ¢, =0.7885 (d,e.f); a) - phase trajectory
for hyperchaotic solution 3; b) - Poincaré map corresponding 1o (a); ¢) - periodic phase majectory 1
d) - periodic phase trajectory 3; e) — phase wajectory 1; f) ~ phase trajectory 2.

Figure 6. Quasi-periodic solution (& — phase trajectory) corresponding to g, = 0.786 (see Figure 3)
with the discountinuous Poincaré section (b,c).

On Figure 4 we show the basins of attraction of theese solutions for 10 g, =0.75 and
g, =0.7885. The first one (1) is always beeing periodic one and our pendulum motion takes
place without any impact. The pendulum omits the obstacle (see Figure 5c,e). The second
solution (2) is also periodic but with impacts (see Figure 5f), and it vanishes for
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g, = 0.788106 (see Figure 3c). The third periodic solution (3) is of most importance, since it
undergoes a route to hyperchaos when ¢, is decreased. For instance for g, =0.7885 it is
periodic, whereas for g, = 0.788232 it bifurcates to quasi-periodic solution (see Figure 3b).
The quasi-periodic solution for ¢, = 0.786 and its discontinuous Poincaré section are shown
in Figure 6.

A further decrease of g, causes a wansition to chaos for ¢, = 0.7715 with a short periodic
window. For ¢, =0.7700 again a relatively large periodic orbit domain occurs, which
dissapears for g, = 0.7659. Then the hyperchaes occurs, which is observed until the end of
the considered interval of ¢,. The hyperchaos is interrupted by narrow periodic windows for
g, & (0.7530,0.7543) and ¢, (0.7566,0.7576), which with a high probability include
also quasi-periodic and chaotic intervals. However, the latier ones are difficult
distinguishable in Figure 3c.

The corresponding Lyapunov exponents are shown in Table 1.

Table 1. The Lyapunov exponents 4, (i = 1,...,7)for the analysed solutions.

[ Figure | 5ab Sc 5d | 5e | 3f [6abic
2 0.06 0 0 0 [ o0 0
i 0.01 T-0.010 [-0.0017] -0.11 | -114 | 0.0000
Ay 0 -0.010 [-0.0017 ] -0.11 | -028 [-0.0469
s 067 | 025 [-0.0660] -026 | -028 |-0.0470
s -0.94 | -025 |-12626| -0.26 | -028 .-1.2963
e 148 | 169 [-1.7733] -1.71 | -139 |-1.6679
7 210 | -240 [-1.7733] -2.29 [ -2.56 [-1.8376

CONCLUDING REMARKS

In this report we have analysed regular and irregular dynamics of triple pendulum with
damping, external excitations and impacts and with physical obstacle in the form of
horizontal wall. The impact law for triple pendulum in the form of generalized Newton’s
rule has been introduced, and other special transition conditions for disturbed motion in each
impact point have been applied.

Periodic, quasi-periodic and hyperchaotic motions have been detected, discussed and
illustrated. The basins of attraction for three coexisting peniodic solutions have been
reported, and a transition to hyperchaos has been illustrated.
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