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Abstract. Two non-linear problems are considered: a non-linear wave equation with
Dirichlet boundary conditions and a linear wave equation with non-linear boundary
conditions. A so called small § method is applied. It has been shown, among others that
a "problem of small denominators" is omitted using the introduced approach. A relation
of the used technique to other exiting methods is discussed.

1. Introduction

A problem of construction of periodic solutions to non-linear partial differential
equations has attached recently an attention of many researchers. Some of possible
approaches in a frame of quasi-linear technics have been presented in various
monographs. Among others we must mention the KAM (Kolmogorov-Amol'd-Moser)
theory [1-4], averaging method [5, 6] renormalization approach with an introduction of
artificial small parameter [7, 8] or multi-scale approach [9].

2. One dimensional space problem

Let us consider the equation
u, =u, —(0-u’ 2.1)
with the Dirichlet boundary conditions
u(0,t) =u(m,t)=0. (2.2)

We take % =const, 1<®’ <oo,

From a physical point of view the boundary problem (2.1), (2.2) describes a:
longitudinal bar vibrations in non-linear elastic medium.
We introduce a small parameter in the following way

u, =u, - (@ -Hu"®, ' (2.3)



A solution to the boundary value problem (2.3), (2.2) has the form
u=u,+8u, +3%u+.. (2.4)
The time variable t is changed according to Poincaré-Lindstedt method
t=7t/w, (2.5)
o’ =1+a,5+a,8" +... (2.6)

After introducing of (2.4) - (2.6) to the boundary value problem (2.3), (2.2) and
splitting in regard to 8 the following recurrent system of equations is obtained

Uge = gy, — (@02 =Dug, (2.7)
U, +0u,, =1, — (@ -Du, - (0® -Du, In(,?), (2.8)
Uy, + Oy, + 0L, = Uy, — (@ -1u, -

— (@ —-1){u, In(u,’) + 2u, +0.5u,[In(u,’)]*},
v, (0,0 =u,(nt)=0, i=0,12,. (2.10)

We are going to find a periodic solution to the boundary value problem (2.3), (2.2)
taking into account the following initial conditions

u(x,0) =sinx, (2.11)
u,(x,00=0. (2.12)

(2.9)

In order to satisfy the initial conditions (2.11), (2.12) two different approaches
might be applied. One of them is related to a series development of initial conditions in
regard to 8. Thus, we get in each of the approximation (excluding zero order solution)
the homogeneous boundary conditions [10]. In the second approach [11] a zero order
solution is obtained with an accuracy of an arbitrary constant, which is then defined by
a final solution. This approach represents a kind of renormalization method and seems
to be more suitable for our purpose.

Let us take a zero order solution of (2.7), (2.10)-(2.12) in the form

u, = Asin x cos(wr),

where the constant A will be further defined.
The first order solution has the form

U, —u,, + (0> =1y, =L = Asin xcos(m‘c){nclm2 +InA- 2.1%)
— (@? - 1)[In(sin’ x) + In(cos*(@T))] }. '

The constant o, is found using a condition of avoiding a secular term:

/2 RH20)
| Lsinxcos(wt)dxdt =0
0 0
which yields
InA -1
a, = ——(;)—-Z——W(ZInZ -D(1+w).

Now the functions sin x In (sin? X) and cos (@t) In (cos® wr) are developed into’
the Fourier series, and L reads

L=-A(® - l)[sin :'KE.B:Tj cos(jwr) +cos(m¢)ixk sin kx], (2.14)
j k=2

=2



where:

;=357 Xis-o—, k=357.  Q19)

The particular solution of (2.13) can be presented in the form

u® =y 4 g0 (2.16)

where:

u™ = A(w® -1)sin xng,.‘“ cos(jort),

u® = —A(w® - Dsin(or) £ X,V sinkx, (2.17)
=2

T, 1

(1) _ i . oy _
‘ 1 ml( j2 - 1) k kZ -1
The function u” satisfies the initial condition (2.12). The function u*" gives a
condition to define the constant A in this approximation
an
u,+ou "’ =1

Therefore
1=A+AS(*-DITO. (2.18)

=2
In order to compensate residual function in the initial condition (2.11) introduced
by the function u? it is necessary to modify a general solution of a homogeneous
equation of the first order approximation
u? —u? + (0’ -1u® =0.
In result one obtains ‘
u® = A(w? 'l)ézka sin(kx)cos(@®1), (2.19)

where: @ =vk*+n* -1.

Let us consider a second order approximation equation of the form

U, —Uu, +(@ -u,=
moe 2 (2.20)
= o,,00” sin x cos(wt) + (0* -1)(L, +L, +L,),
where:
L, =2+mhAn" -ou®,

L, = 0.5u,[In(u,)’F* + u” In(cos*(wr)) + u"? In(sinx), (2.21)

L, = [2+In(u,)u® - o, u?® +u" In(sin® x) + u'? lntccus2 (@1)).

The terms occurring in the right-hand side of the function L; do not include
resonance harmonics. In contrary, in the function L, there occur only resonance
harmonic sin x cos(®t). In the function L, in spite of the already mentioned harmonic,
there appears also the resonance one of the form sin(kx) cos oxx, k=2, 3,....

A proper choice of the constant o, allows for omitting sin x cos(wt). In order to
avoid problems concerning other resonance harmonics the following procedure can be
applied. ‘ , ' '

The following change of variables is introduced



0, = 0 +BP8 +BP8% +.... (2.22)
and thus
u® = A(@* -1) ¥ X, sin(kx)cos(®1) +
o (2.23)
+A(@ -3 ¥ X,BY sin(kx)cos(a®1).
k=2

Now, by a proper choice of the constant B\" one can avoid all the resonance tefms
appearing in the right-hand side of equation (2.20). '

A generalisation of the presented above method into a higher dimensional case can
be extended rather easily.

3. Problem with nonlinear boundary conditions
We consider the following equation governing the behaviour of waves

Uy =gy (3.1)
with the following boundary conditions:
u@©,)=0, u(lt)+udt)+en’dt)=0. (3.2)

A similar problem for |g|<<1 can be efficiently solved by means of the perturbation
technique.

3.1. Zero approximation

By taking € =1, we are going to solve the fundamental problem (3.1) - (3.2). From
a physical point of view, the considered problem governs, for instance, vibration of a
string or longitudinal vibrations of a rod with non-linear boundary conditions. After
splitting the initial boundary problem with regard to powers of the "small parameter 5"
the following recurrent system of linear boundary value problems is obtained:

Ugn = Voxx _
u; (0, t) C 0, i= 0;1,2‘,... (33)
Wy = Wpr — iui_pum, i=123,.. o;=0,

p=0 .

for x=1 wuy, +2u,=0,
uj, +2u; = -, In(ug), (3.4)
u,, +2u, =—u,In(2) - 2u, - 0.5u,[In(wy)) = M,.

A solution to the boundary value problem (3.3) can be presented in the form
u, = AsinWyx sin ,t,

where the frequency @y is found from the following transcendéntal equation’
(Do =""2tg ‘.l)o.



3.2 First order approximation

The first order approximations have the following form

U, — U, = 0,A0]sin(®,x)sin(w,t), (3.5)
u,(0,t)=0. (3.6)

For x = 1 we have
u,, +2u, = A, sin(w,)[InA? + In(sin®(0,t))] = M,, X))

where: A, =—Asin,.
A particular solution to equation (3.5), satisfying the boundary condition (3.6), has
the form:

ul = —%A&)ﬁx cos(myX) sin(w,t). (3.8)

The resonance term A R, sin(w,t) is obtained from the right-hand side of the
boundary condition (3.7), where:

R, = lnAl2 +0.5-In2.
The constant ¢, is obtained as a result of avoiding secular terms, and it reads:
o, =R, /(6+7).

Next, the right-hand side of the boundary condition (3.7) is represented by the
Fourier series

M, = A, 3 T, sin(ko,t),
k=2
2n

. - mﬁ mo . 2 2 "
where: T, =~ | sin(@,t)lln A} + In(sin’ (0,t)Isin(koyt)dt.
0

To conclude, the following results are obtained:

A%sin’ o,

T, =1+In (for k=1),

T, =- (for k=357,..), 3.9)

k?-1
T, =0 (for k=2446..).
When the term of k = 1 is neglected, then

M,=-A, 3

k=3,5,7....

sin(ka,t) , ©p = 2.28893. (3.10)

k*-2

A solution to the boundary value problem (3.5) - (3.7) has the form u; = u® +u®,

where u® - solution to the homogeneous equation (3.5), and



u®=A 3 T sin(w, kx)sin(w, kt),
1é k (0, 0 (3.11)

T® =T, [kw, cos(ke, ) + 2sin(ko, )].
In a similar way a second order approximation can be obtained.

4, Conclusion

As it has been shown, an application of "small § method" can lead to omitting a
problem with small denominators. A question arises: what it means when a problem of
small denominators occurs. It indicates rather a wrong choice of a small parameter or an
extremely complicated dependence of a sought function on a small parameter. The
efforts focused on solution to the small denominator problem led to the fundamental
results (KAM-theory). However, a final complete solution to the mentioned problem is
not formulated yet. Therefore, a natural idea of searching another small parameter
appears. The above given examples show that parameter 6 occurring in the exponents of
the series can serve as an alternative choice to avoid the mentioned drawbacks.
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