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Summary. In this contribution transition to chaos via symmetric oscillations in a

freely supported and sinusoidally excited flexible shell is analysed

1. Introduction

In this contribution dynamics of flexible shells is analysed. The discrete approximation of a
continuous system is carried out using a finite difference approximation with an error of 0(H4”). The
obtained set of ordinary differential (ODE) and algebraic (AE) equations is solved using either the
Runge-Kutta method of fourth order and the Gauss method, respectively.

2. Governing equations

The following Karman's equation is formulated
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which holds for an isotropic plate. The following notation is used: w(x, y, ¢) - the plate deflection
along z co-ordinate directed to the Earth centre, g(x, y, ¢) - transversal load function (g = 0), P(y, ©) -
a longitudinal load function along ox axis. The co-ordinate origin lies in left below corner of the plate,
whereas the ox and oy axes are attached to the plate sides. The plate volume

Ge{x,y] 0<x<a, 0<y<bh), —h<z<h,
where 24 is the plate thickness. In equations (1) the following Airy's function is introduced

i 2 2 2]
T:Q_‘F__p' T=6F W=6F,
Oxdy

(2)
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where Ty, 7, T,, are the stresses in average plate surface (& denotes damping and v is the Poisson
coefficient).
The system of equation (1) is transformed to the non-dimersional form (the non-diménsiorial °

quantities possess the bars) via relations

x=ax, y=by, w=2kw, z:%, (=11, £=(2h)E,
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where: E - Young's modulus.

To the system (1) the following boundary conditions are attached (free support on flexible

unstretched ribs)
w=M_=N_=¢=0 for x=0;1, 3
w=M =N =¢£,=0 for y=0,|, ¥
which can be expressed via w and F in the form
o o'F
w=Z=F=5"=20 for x=0;1,
(4)
2 2
w2 F-25_0 for y=01
The following initial conditions are used
W,_, = Asinmsinzy, (4=1-10"),
(5)

wi.-:.n =0.

We should emphasise that both boundary and initial conditions are symmetric, and
additionally a symmetry condition is applied to the form of plate oscillations (axis symmetry). It
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means that only 1/4 of a square is considered (0<x<0.5; 0< y<0.5). Therefore, other points

oscillations are detected using a symmetry condition.

3. Reliability of the obtained results

In order to check a reliability of numerical computations the following tests have been carried
out. A plate has been subjected to excitation P, = F,sinwt(w =5.72, P, =6)and the 1/4 plate

surfaces has been divided using the space step H=1/8 and H=1/10. The AE system has been solved

using the Gauss method. Because a high accuracy has been obtained in both cases therefore further

the steps H=1/8 in space and Ar=2-10"" in time have been used.

In order to anal-yse a structure of fnu}tifrequency and chaotic oscillations and their bifurcations
we need to apply various approaches ( observation of oscillations in all points of the plate, phase
portraits, Fast Fourier Transform, Poincaré maps, bifurcation diagrams, and so on).

Contrary to the problems occurred in radiophysics and electronics, where mainly timing chaos
is investigated, in a field of continuous mechanical systems a key point of research is oriented on
spatial chaos. The last one can be solved relatively easy if the continuous system is homogeneous
because of x and y. It means that x and y do not appear explicitly in the differential equations. If we
treat a spatial co-ordinate as a time we get an autonomous system. In this case a problem from
mathematical point of view is similar to that of timing chaos. However, in theory of plates with finite

dimension this can not be achieved.

In this work we consider the so called "modal portraits": w, (w),w,(w),w_ (w),w, (W),

w,(w,),w,(w,) for different time points for an arbitrary point of the plate. In addition, a cross

section of this portraits is used every period of excitation. Both modal and phase portraits are

analysed which allows to analyse a spatial chaos and its influence on timing chaos.

4. Analysis

We analyse a transition from a steady state to chaos using the following control vector
{Py o}, where 4.72 <@ < 6.72 (Fig. 1a). A transition to chaos will be described using co = 5.72 (Fig.
1b), which corresponds to a frequency of linear plate oscillation (¢ = /, and Py(w) is shown in Fig. 1).
In addition, the average shell deflection is presented in Fig. lc.

In Table 1 a relation between frequencies versus amplitudes Py (P, = 4; 7; 7,5, 8; 8,25; 8,5,
9. 10; 15; 20) is given. Analysis of the Table leads to conclusion that for 3.5< P, <7 (Fig. 2) the
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Fig. 1. Different steady states in two (a) and one (b) dimensional parameter space and
average plate deflection versus P, (c)

106



Table 1.

Px=Posin 5.72 t
N @ Po
) 4 7 7.5 8 (825|851 9 10 15 20
l. | 9.45E-14 | - X
2. 0.00555 X X X X X
3. ] oo0ll1l x
4. | 0.02219
3. 0.45499 -0y ® ® ®
6. 0.8323
7. | 0.88778
8. | 0.90998 | ® ® 209 ®
9. | 0.91553 %
10. | 0.99321 X :
11.] 0.99876 _ _ S —
12,1 1.04869 X
13.]1 1.31503 x
14. | 1.36497 ® N
15.] 1.81996 | 2o, | 20, | 2o, day 20,
16. | 1.82551 x
17. ] 1.84215 x
18. | 1.95867 X
19.1 2.27495 a4y Serg Serg Sy
20. | 2.72435
21. | 2.729%4 2o, 6o, 3,
22.| 317938 ®
23.| 3.63437 X
24. ] 4.08936 YT
25. ] 4.54434 b
26. | 4.99933 x
27. 1 5.00488 X
28. | 5.45432 X
29.| 6.81929 X
30. | 7.27428 x
3. 7.72927 x
32.] 8.18426 x

& - fundamental frequency, x - independent frequency, Noy - synchronization
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Symmetric oscillations P,=Posin 5.72t, Po=4, £ =l

Poincare pseudomap .
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Fig. 2. Time histories, Poincare maps and pseudomaps, phase and modal portraits, Fast Fourier
Transform (FFT) and power spectrum of non-symmetric plate oscillations.
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oscillations include two frequencies @, and @,. An internal synchronization phenomenon is observed

@;s = 2wy (as it is pointed out by Andronov et al. [1], "a unique rhythm of common existence

occurs"). In the interval of 7 <@ £ 7.9 the oscillations occur on three independent frequencies w,, oy
and @y : @5 = 2aw, and @ , = 2oy, Besides, the new freqﬁencié,s appc.ar, which are linear
combination of wy aﬁd @Dy W5 = Wpy- a&,(@;p = @y, + @y In the interval of 7.9 < @ £8 oscillations
are spanned on two-four independent frequencies. This behaviour corresponds to crisis [2]. The post
crises state is refated to 8 <@ <9.2 .;(Fig.li)_;_ where os;-:ifl_latigﬁs' include three freqiiencies @;, w; and
g The following synchronization of osciltations occurs, because of ;s : @;; = 3ws, wyy = Sws. Then
the plétc starts to oscillate on two frequencies ws and @;- and the synchronization on one frequency
@5 OCCUTS: @y = 20)5,..0,4 = 3Ws, Wys = 4ws, @y = Sws, Wy = 65 (@ € (9.2; 13)). For Py > 20 the
plate exhibits chaos (Fig. 4). |

In Figures 2-4 the following characteristics related to the plate centre are introduced:

05 03

w(t), w,(f)= I Iw(x, y.t)dxdy, Poincaré pseudomaps, the volume relation (w, w, w) and its

a a
projection onto the corresponding plane, Poincaré sections, FFT, power spectrum for (x =y = 0.5)
and for an integral characteristics w, as well as modal phase portraits (wg, w,, w) for (x = y = 0.25)

and the time histories. All of the plate points behave in a similar way.

5. Conclusions

It should be pointed out that a separation of a motion to regular and chaotic parts has rather
a conventional character. Each of observed chaotic behaviour is characterized by regular parts, timing
rules and space structures. A problem of investigation of chaotic behaviour is related to detection and

analysis of timing and spaces rules having either regular or chaotic behaviour.
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Symmetric oscillations P,=Po sin 5.72t, Po=8.5, &€ =I

Poincare pseudomap
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Fig.3. Same as in Figure 2
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Symmetric oscillations P,=Po sin 5.72t, Po=26, £ =I

Poincare pseudomap
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Fig. 4. Same as in Figure 2.

111



Professor Jan Awrejcewicz
Technical University of Lodz, Division of Control and Biomechanics
1/15 Stefanowskiego St., 90-924 Lodz, Poland

V. A Krysko, A. V. Krysko

Saratov State University, Department of 'Mathematics,
B. Sadovaya, fl. 96a, 410054 Saratov, Russia

112





