5th CONFERENCE

on

DYNAMICAL SYSTEMS
THEORY AND APPLICATIONS
1.6dz, December 6-8, 1999

s

NON-SYMMETRIC OSCILLATIONS AND TRANSITION TO CHAOS IN
FREELY SUPPORTED FLEXIBLE PLATE SINUSOIDALLY EXCITED.

J. Awrejcewicz, V. A. Krysko, A. V. Krysko

Abstract. In this contribution timing and spatial chaos exhibited by a flexible
plate sinusoidally excited is analysed.

1. Introduction

Flexible rectangular plates periodically excited can exhibit complex behaviour including
regular and chaotic oscillations. In addition, many other dynamical features depending on the
parameters such as jump phenomena, complex resonances, symmetric and unsymmetric oscillations
leading to space - time dynamical configuration, standing or travelling waves, can appear.

In this contribution complex non-symmetric oscillations of a plate sinusoidally excited are
analysed and this contribution extends the results presented in reference [1] printed in this
Proceedings. A method of solution as well as the boundary and initial conditions are the same as in

reference [1]. However, now a symmetry conditions are not introduced and a whole space due to
spatial co-ordinates is taken into account (0<x <1, 0<y<1). Contrary to the previous work here

the algebraic equations have been solved or each iterational step using a relaxation method.
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2. Analysis

The area of integration includes a square (A = /) and, as in reference [1], the initial
conditions: w _ =1-10"sinmsinzy; W _ =0 and the boundary conditions are symmetric.

However, an unsymmetric mode of stability loss is observed. In Table 1 frequencies @ versus
amplitude of excitation Pp (Py = 4; 7; 7,5; 8: 8,25, 85: 9; 10; 10,25; 10,5) are presented. A scenario
from a steady state to chaos is illustrated in Fig. 1. The various dynamical states of the system is
reported in Figs 2-5. In addition, the plate surface deflections for Py = 7.5 for the freely taken time
moments are reported. The obtained results lead to conclusion that from an energetical point of view a
non—symmétric mode corresponding to chaos transition is more suitable. In this case a magnitude of
longitudinal excited force is two times smaller than for symmetric mode transition to chaos.

The various synchronizations in time are characterized by a periodical behaviour of discrete
or continuous systems. An occurrence of spatial order is less investigated in comparison to timing
synchronization. The up dated results are referred to investigations of Bemard cells in convective
flows, Karman vortices, or spatial-timing changes of biological cells structure, and other.

An investigation of plate oscillations should be carried out from a point of view of spatial-
temporal order or cl_laos, because the governing equation is a partial one and the being sought

functions w(x, y, t) and F{x, y, t} depend on two spatial co-ordinates and time. The derivatives of

wix,y,t) and F(x,y.t) possess both geometrical and physical meaning. Because aﬂ ?—w—- are the
23

tangences of rotation angles of a normal with the corresponding co-ordinates. w is a velocity;

o'w O'w O'w

&'’ gyt axdy

correspond to plate curvatures, which together with the being sought functions w

and derivatives %, %3 define a change of plate geometry Vx,y €[0,1; 0,1}.

3. Conclusions

In this work spatial-temporal chaos is investigated. A complex spatial behaviour is observed

leading to an occurrence of spatial chaos which is indicated by the dependencies (w,,, w,, w) and their

projections onto the corresponding hyperplanes for an arbitrary point of the considered space.
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Fig. 1. Different steady states in two (a) and one (b) dimensional parameter space and
average plate deflection versus Py (c)
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Non-symmetric oscillations P,=Po sin 5.72t, Po=4, £ =|
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Fig. 2. Time histories, Poincare maps and pseudomaps, phase and modal portraits, Fast Fourier
Transform (FFT) and power spectrum of non-symmetric plate oscillations.



Non-symmetric oscillations P,=Posin 5.72t Po=75. £ =1
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Fig.3. Same as in Figure 2 and the plate configurations for different time moments t.
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Non-symmetric oscillations P,=Po sin 5.721, Po=3.5, £ =I
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Fig. 4. Same as in Figure 2.



Non-symmetric oscillations P.=Po sin 5.72t, Po=10..5, £ =!|
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Fig. 5. Same as in Figure 2.
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