5th CONFERENCE

on

DYNAMICAL SYSTEMS
THEORY AND APPLICATIONS
1L.6dz, December 6-8, 1999

SMALL 6 METHOD APPLIED FOR CONSTRUCTION OF PERIODIC
SOLUTIONS TO NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

V. Ar_ldrianov, J. Awrejcewicz

Summary. A non-linear wave equation with Dirichlet boundary conditions is
analysed. A so called small & method is applied. It has been shown, among
others that-a "problem of small denominators" is omitted using the introduced
approach.

1. Introduction

A problem of construction of periodic solutions to non-linear partial differential equations
has attached recently an attention of many researchers [1-21]. Some of possible approaches in a frame
of quasi-linear technics have been presented in various monographs. Among others we must mention
the KAM (Kolmogorov-Arnol'd-Moser) - theory [15-18], averaging method [9, 11], renormalization
approach with an introduction of artificial small parameter [19, 20], multi-scale approach [10].

The problems concerning the existence of periodic solutions have been considered in
references [1, 2, 9, 12-18]. In reference [13] the variational technique is used, which will be briefly

sketched. Consider the following problem

u, =u,+f(u), O<x<r, (1)

w(0,0)=u(z,t)=0. (2)

Under certain (fairly weak) conditions of the nonlinear term f(u), the existence of the periodic

solution
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ux.)=u(x.t+T), T=yx (3)

is proved, where y is the rational number. The last requirement refers to the approach used in the
reference [13]. A review of the papers using the variational techniques is presented in reference [14].

An application of the KAM - theory allowed to examine a case of irrational y occurred in (3)
[12, 15-18]. In particular, in references [15, 16] the existence of time periodical solutions of the
boundary value problems (1), (2) with f(u)=w +u’ and with fixed y in (3) has been shown. A
generalization of the technique presented in [15, 16] has been proposed in investigations [17, 18].
The variational approach and KAM - theory are complementary to one another and allow to cover a
whole interval of frequencies (in the case of proof of existence of solutions). A construction of
periodic solutions in tin?c of non-linear partial differential equations is outlined in references [3-11,
19, 20). ) ]

The'fundamentél problem occurring during a formal construction of periodic solutions in all
earlier discussed cases is related to that of small denominators. The mentioned problem can be briefly
presented in the following manner. Suppose that a time periodic solution is constructed to the

following boundary value problem

3
u,=u_+eu, <<, (4)

"
u(0,0) = u(x.1) = 0. (5)
Using a first approximation one obtains a linear wave equation. In order to get higher
approximations one needs to insert a linear wave operator. The last operation leads to an occurrence
of small denominators.
Therefore, a natural need for finding another parameter of asymptotic series to avoid the
mentioned drawbacks is required. In the papers [22, 23] the so called "small 3 method" is proposed,
which relies on introduction of artificial “small parameter” & in a power of non-linear terms.

According to that approach equation (4) should be rewritten to the form

_ 1424
u, =u_ +eu"?,

and its solution can be sought in the series form of small parameter 3.
An application of the outlined procedure to a series of nonlinear equations showed its high

effectivity.
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2. One dimensional space problem

Let us consider the equation

u,=u, —(@* -’ (6)
with the Dirichlet boundary conditions
u(0,1)= u(#,t) =0. )
We take @’ =const, l<w! <.
From a physical point of view th;é boundary problem (6), (7) describes a longitudinal bar

vibrations in non-linear elastic medium.

We int-r:)éluce a small parameter in the following way

'

u,=u,_ —(w? =Du'"? - (8)
A solution to the boundary value problem (8), (7) has the form

u=u,+ou +8u+.. )
The time variable t is changed according to Poincaré-Lindstedt method

t=1/w, \ (10)

@'=l+ad+a,d +.. (11)

After introducing of (9) - (11) to the boundary value problem (7), (8) and splitting in regard

to & the following recurrent system of equations is obtained
Ugy = Ugpy — (0 - Du,, (12)
u,, +au,, =u, — (@ -Du, - (@ -y, In(x,’), (13)

- ? .
u, +au, +au,. =u, —(@ -u, -

) : _— (14)
—(@* =1D){u, In(u," ) + 2u, +0.5u,[In(z, )]’ }. .

u,(0,0) =u(m,t)=0, i=0,1,2,.. (15)

We are going to find a periodic solution to the boundary value problem (7), (8) taking into

account the following initial conditions
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u(x,0) =sin x; (16)
u,(x,0)=0. (17)

In order to satisfy the initial conditions (16), (17) two different approaches might be applied.
One of them is related to a series development of initial conditions in regard to §. Thus, we get in
each of the approximation (excluding zero order solution) the homogeneous boundary conditions. In
the secoﬁd approabh a zero order solution is obtained with an accuracy of an arbitrary constant,
which is then defined by a final solution. This approach represents a kind of renormalization method
and seems to be more suitable for our purpose.

Let us take a zero order solution of (12), (15)-(17) in the form
u, = Asin x cos(@r),

where the constant A will be further defined.
The first order solution has the form

u, —u, +(@ -y =L=Asinxcos(wr){a,w’ +In4-

2 2 2 (18)
—(@" = 1[In(sin” x) + In(cos” (@7))]}.

The constant a is found using a condition of avoiding a secular term:

xi? =l lw)

I Lsinx cos(mr)d;:dr =0

which yields

Ind o’-1

a=———=-———(2In2-1)1+w).

Now the functions sin xIn(sin’x) and cos(wr)In(cos’wr) are developed into the Fourier

series, and L reads

L=-A@® —1)|:sinx T, cos(jwr) +

) (19)
+ cos(mr)z X, sin Ior],

k=2

where:
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Tj=_ -I_I 3 j=3’5'7"'
J (20)
4 —
& =_k1 1 ] k_3'5’7'"
The particular solution of (18) can be presented in the form
w® = 4V 4 - 21
where:
u'"" = A(w® -1)sin x T,m cos(j@r),
2
u'" = —A(a}l - l)Siﬂ(ﬂJT)ZX‘.m sin kx, (22)

=2

oo T oy 1
i m!(jl_l)’ k kz“"l

The function ™ satisfies the initial condition (17). The function «"" gives a condition to

define the constant A in this approximation

up +u " =1

Therefore

1= A+ Ab(a? -l)ir}” . 23)

=

In order to compensate residual function in the initial condition (16) introduced by the
function u“” it is necessary to modify a general solution of a homogeneous equation of the first
order approximation

u® —y?® +(€D1 ___])utz) =0.

In result one obtains

u? = A(® - 1)2 X, sin(kx)cos(a”'7), (24)

k=2

where: @ = Jk*+0® -1.

Let us consider a second order approximation equation of the form
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Uy, —u,, +(@ —Nu, =

113

(25)
= a,®’ sin xcos(@t) + (0 - 1L, + L, + L,),

where:

L=02+InAu® -au®

o

L, =0.5u,[In(x,)*]* + u"" In(cos’(@1)) + u™? In(sin x),

L, =12+ In(u, ) u® — au® +u"" In(sin’ x) + u"? In(cos’ (@7)).

The terms occurring in the right-hand side of the function L do not include resonance
harmonics. In contrary, in the function L7 there occur, only resonance harmonic sin x cos(@t). In the
function L3, inspite of the already mentioned harmonic, there appears also the resonance of the form
sin(kx) cos okx, k=2, 3,.... _ ’

A proper choice of the constant a2 allows for omitting sin x cos(wt). In order to avoid
problems concerning other resonance harmonics the following procedure can be applied.

The following change of variables is introduced
o, =" + 5+ IS + ...
and thus

u® =A@ - 1)) X, sin(lx)cos(@7) +

ked

+ A(0? -1)52 X, B sin(lx)cos(@” 7).

k=2

Now, by a proper choice of the constant S{" one can avoid all the resonance terms appearing

in the right-hand side of equation (25).

4. Conclusions

As it has been shown, the small 8 method can be applicable for construction of periodic
solutions to nonlinear partial differential equations to the second approximation order.
Here only a construction of solution is presented. The problems of convergence, accuracy

estimation, as well as construction of higher order approximation need further investigations.
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