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1 Introduction

In this paper we discuss a problem of optimal vibroisolation of a general shell with varying
thickness and made from the orthotropic material. This problem is more complicated in
comparison to the previous discussed cases. We shortly discuss a general approach using the
non-linear model, and then we consider a linear case and apply successfully a superposition
rule. Contrary to mostly used approaches we show that an optimal vibroisolation can be

achicved by minimization external forces work instead of rather commonly used natural
frequency optimizations.

2 Fundamental assumptions and relations

Let us assume that a conical shell covers the finite space 2 with the boundary S. The

following equations govern behavior of a shell with a varying thickness and made from
orthotropic material [Krysko 1976]:
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2h, - thickness of a shell measured in its centre; k, =R ™', ky = RY"l - shell curvatures in x
and y directions, correspondingly; F - stress function; w - normal displacement of shell's
averaged surface in z direction; y,,Yy, - rotation angles of the, averaged surface in surfaces xz

and yz, correspondingly; y - weight by volume of the shell's material; g - gravity acceleration;
t - time; X, y, z - Descartes co-ordinates.

L(w,w)=

Equations (1) have the non-dimensional form:

x=X, 3=, w=", @h-2, F-—F
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and the bars above the non-dimensional quantities are omitted.

The boundary conditions on the edge S are considered in a general form. Let S=8,+8,+8S, and

S, corresponds to the free part, S, corresponds to the free support and S; to the sliding support.
Therefore we have

Qn =M, =M, =0 on S,, (2)
w=M, =y, =0 on S,, 3)
w=7n=7t=0 on S3, (4)
2
F=a—£=0 on S. (5)
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The following initial conditions are attached
ou(x,y,0)
ot

where: ii(x,y,t) = (W,Y,,Y,) - three components of vector of displacements.

ti(x,y,0)=8°(x,y), i'(x,y), (6)

The following assumptions are applied to the coefficients A, 8, and the shell's thickness
h(x,y):

a) O<An SAUmk SAb; 0<an Saijmk Sab; (7)
Ajmks 8ymk (., mk=1,2,3) - bounded functions on Q;

b) for V(x,y)eQ and therefore V€,neR', 3C, >0,

Anng? +2A,En+Apnn® 2Co(E? +0?) (8)
as well as 3C, > 0, which means that
apné? +(2a) —2,5,)En +am° 2 C (2 +1?) 9
c) h(x, y) - bounded function on Q for V(x,y)eQ:
0<hy <h(x,y) < h,. (10)

3 Non-linear vibration of shells governed by Timoshenko type model

In this item two theorems will be formulated. The first one is related to the important property
of the operator L(w, F).

THEOREM 1. If w € H)(Q), then YFe H}(Q) and if L(w,F)e H™'(Q) then the following
relation is satisfied

[L(w, FywdQ = [L(w, w)FdQ. (11)
Q Q

and consequently L(w,w)-FeL'(Q).

The functions space is denoted by H2(Q) and Hf,(Q) is a closure in H2(Q) of the functions
manifold

V-{FEC”(Q)|F—9-1-E—O S}
= —anz— on .

The theorem 2 shows in which sense and in which spaces of functions the problems of (1) and
(6) can be solved.

THEOREM 2. Let the shell's curvatures k,, k, are the bounded functions on Q together with
their second derivatives and suppose that conditions (7) - (10) are satisfied. Then for
vq(x,y,t) e L2(0,T,L2(Q)), u’(x,y)=V,, 1'(x,y)e(L2(Q))® a weak solution to the
problem defined by (1) and (6) exists and
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u(x,y,t) e L*(0,T; V,), .
F(x,y,t) € L* (0, T;H{(Q)).
Above L, (Q) denotes the Hilbert space.

4 Optimal vibroisolation against the harmonic load

The governing equations (1) have the following operator form
A[h]d + B[hJi"'=q(x,y,1), (12)
where: A[h] - non-linear differential operator related to the shell's deformation energy, B[h] -

operator related to the shell's mass distribution (it includes the inertial effects), q(x,y,t) -
external excitation, 0 = (W,Y,,Yy, F).

We assume that the shell's thickness h(x, y) and its plane Q are not fixed. They are chosen on
the given manifolds U, and U,, in order to realize minimum dynamical effects of the load
q(x, y,t) on the shell as well as the required processes from an economical point of view.

Suppose that we are going to find h*(x,y)e U, and Q* e U,,. Both manifolds U,, and
U,, are defined by the technological requirements and additional factors, but they also should
satisfy the "mathematical constraints”, which guarantee a solvability of the problem.

We are going to minimize the shell's weight and we require that a work of the elastic forces in
the time period [0, T] overlaps with that applied to a shell with a priori given configuration Q,
and with the thickness h (x, y) = 1. In other words, we are going to find h*(x,y)e U,,,

Q* € U,, which realize min [,(h, ), where

T 2
I (h,Q)= [ndQ+|[ [adQdt-P,| , (13)
0 €lo -
T
and 1 - solution to (12) for a shell with thickness h and plane Q, P, = [ [qiidQdt - work of
0N

external forces on displacement tjof the initial shell. In our considerations the constraint
P=P, is achieved using a penalty multiplier £,

For linear cases many conclusions about strength of constructions can be obtained analytically

using properties of solution superposition. Developing q(x,y,t)in the Fourier series in
relation to time t we get

a0
qx,y,t)= zqn(x.y)sinmnt
n=|
for the periodic excitation.

Furthermore, we are going to analyze the shell's behavior subjected to only one of the
harmonic component g, sinw,t in the stable regime. It is evident, that also @, can be
presented in a similar way 4, = u,(x,y)sino_t, where U (x,y) fulfils the equation
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Alh]E, - 0BG, =§,(,y). (14)

Consider a shell with an arbitrary plane Q and the thickness h. If the eigenvalue problem
corresponding to free shell's vibration of the form

A[h]; - A{B[h]; =0

is solved, then the solution i, and the load g, can be sought in the form of a series related to
the eigenmodes

Ein (x’ y) = iainﬂji(xs Y)s
) (15)
an(x: Y) = Zfin{l}i(xs Y);

i=l
where f are defined by the following equations

Zfin(¢is¢j)=(an,¢j)s i=12,.. .

Using a superposition rule only one component q,, =f, ¥, (x,y)can be applied. We are
going to find a solution to the equation (14) for this case. Substituting (15) to (14) we get

S° 81 (AL (%, Y) = ©2B[AIF (x, 1)) = Fu By (%, Y). (16)
i=1

Multiplying (16) by ;(x,y) and integrating on Q one obtains

Y a2 —02)BM,,§)) = fu (7. 7).

i=l
Introducing the norm for the functions ; in the form (B[h]y;, ;) = §;, we get
(o)
n »
(i = o)
or

z nk(\uksw)—l( y)

ﬁnk (X, Y) (12 2

The work of external forces has the form
P, = nf 2 (\I’zks':l.‘igz _
@y a1 (A —0y)
In the above formulae y;, Wy, f,,, A; depend on both h and Q. In this case we can assume
that f,, and §,; do not depend on'h, and the problem of minimization of the external forces is
easily solved. The aim of approach is to minimize the expression (,,¥;)*/(A} —02). It

2 . . s . .
means that lk should be maximally shifted away from the excitation frequencies mﬁ. In this
simple formulation a problem of vibroisolation is reduced to that of spectrum optimization. In

a general case, even for a harmonic excitation with the frequency ®? the full work has the
form



= n m(qju-q‘i)z ‘
P =%P, =— Stk Vi’ (17)
" E““ Op kot (A —0?)

It is clear, according to (17), that in practice it is impossible to give conditions on the shell's
spectrum A, because they strongly depend on f2 . In addition, with a plane change also W,

o0

are strongly changed and that the sum of the all harmonics work P, =) P, . The above
n=|

remarks lead to conclusions that a practical realization of a construction with a maximal

difference between the excitation and resonance frequencies is rather difficult or even
impossible. The construction can work on one of the resonance frequencies only if the

corresponding component f,, does not appear in a load. The problem is more complicated in

the non-linear case. In spite of the mentioned remarks the frequency of vibration ©, depends
on the amplitudes, i.e. on the thickness distribution as well as on the plane shape of a shell.

The above considerations lead to the following conclusion. A problem of the optimal
vibroisolation should be considered not as that of constraints formulations applied to the
natural vibration spectrum, but in a more broadband manner defined as the external forces
work minimization.

However, due to new formulation of the problem many difficulties occur relating either to
calculation abilities or to a search problem formulation. During a seek process the shell's
natural frequencies may lie in a neighborhood of one of the excitation frequencies. In this case
a solution to the problem (12) simply does not exist. As a result all of the algorithms stop to
work. The constraints on U, and U,, excluding those effects are very complex in general.

Therefore we consider only a problem of optimal vibroisolation in the linear case with a
harmonic excitation and with a given frequency. The problem is formulated via (14), where

the linear differential operators L[h] and M[h] should substitute the operators A[h] and B[h]
correspondingly.

L]

The results given above allow to apply the algorithms used for the spectrum optimization
problems. The only difference is that on each calculation step (instead of spectrum) a work of
external forces should be calculated.

In a case of shells optimization, in regard to a set of parameters h(x, y) and Q, the most
effective is the finite element method.
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