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ABSTRACT

In this paper a method of controlling and
improvement of stability of periodic orbits of vibro-
impact systems is proposed. This method is based on
the feedback loop control with a time delay. The
paper is focused on three main items.

First, an analytical method is proposed to
estimate delay loop coefficients for improvement of
stability of the vibro-impact motion for one degree-
of-freedom systems. Then, control of periodic
motion of the one-degree-of freedom vibro-impact
oscillator is analysed numerically. Applications of
the method to the multibody vibro-impact dynamical
systems are given.

INTRODUCTION

It is worthless to say that mechanical vibro-
impact systems have been employed in both
theoretical and applied mechanics for a long time.
The vibro-impact dynamics can be observed in many
real engineering systems, such as hammer-like
devices, balls and race dynamics in a ball bearing
assembly, wheel-rail impact dynamics, etc. (Grybos
1969; Peterka 1974).

Nowadays again this field of research has
attracted strong interest, but in the frame of theories
of modern dynamical systems. Recent industrial
examples (tubes fretting wear through vibro-impact
behaviour in nuclear reactors or impacts between old
and high buildings excited by earthquakes belong to
additional but not satisfactory solved questions of
discontinual dynamical systems.

There are two parallel branches of investiga-
tions in the frame of vibro-impact dynamics. The
first one is based on a better approximation of lows
for impact motion and restitution coefficients, and it
is more involved in the physics of materials. The
second branch includes control of steady-state vibro-
impact motion with a possibility of stability changes
(either to destabilise or to stabilise the vibro-impact
attractor considered).

Recently many papers have appeared, which are
devoted to control of nonlinear oscillators, including

also control of chaotic orbits (Pyragas 1992; Shinbrot
et al. 1993).

In general, these methods could be devided for
feedback control with a time delay (Youcef-Toumi
and Wu 1992), sliding mode control (Slotine and Li
1991), repetitive control (Hara e al. 1988), iterative
learning control (Arimoto 1990), adaptive control
(Slotine and Li 1991), and so on. The main purpose
of these methods is to control complicated systems,
even with imprecise knowledge of their
mathematical models. However, the control of the
attractor or repiler analysed is based on the numerical
observations of the required results by an
introduction of the "helping" control coefficients.
Theoretical predictions are rather not given. Here we
address one, not satisfactory solved yet problem of
the vibro-impact dynamics control with delay
feedback and we give analytical prediction of the
proper choice of control parameters.

CONTROL OF VIBRO-IMPACT PERIODIC
ORBITS

We analyse the following one-degree-of-
freedom vibro-impact system with one clearance,
presented in Fig. 1.
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Figure 1. One-degree-of-freedom kinematically

excited vibro-impact system with one clearance (a)
and its control diagram (b) ("s" denotes clearance)



The equation of dynamics is as follows
% +cx + a’x = Py cosmt + A[x(t) — x(t—'[')]+(1

+B[x(t) - x(t - T)], )

where:

and T=2n/w is the period of the considered periodic
orbit being stabilised.

A key point of such a control is that a periodic
solution possesses the same period as the excitation,
i.e. Xg=xo(t-T), and X, is a particular solution of both
the controlled and uncontrolled system (Krodkiewski
and Faragher 1995). A delay loop is switched off
where perturbations are not present. In the case of
perturbations the controller causes the perturbations
to vanish more quickly than in the case without
control. The problem of analytical estimation of the
influence of control coefficients for periodic orbit
stability cannot be solved in a standard way. Here we
propose the following approach. Because in fact the
differencies x(t)-x(t-T) and x(t) —X(t —T) are small,
we express them by introducing the small parameter
€, which allows one then to apply the KBM method
formally and next to take e=1 (Awrejcewicz 1994).

We assume damping of the same order as g, and
from (1) we obtain

X+ a2x = Py cosot + gA[x(t) - x(t - T)] +

+EB|:[ 1- %J x(t) - X(t - T)J_ )

Introducing
Py
X=2Z+—5—— cosot, 3)
o -
we get
i+a’z=¢f(a,n,y),
where:

P,
Ef(a,n,qj)=SA{[Z+ 3 g 2c:osa)tJvz(t—T)+
o’ -

P
e 5 cosm(t-'I)}+

a -

+eB. (l—ij('z+ Po cosu)t] +
B )

-2(t-T)- — Po - cosw(t - T)},

a’ -
‘n=ot, y=oqot.

Using the KBM method we have truncated the €

series up to the order O(g) and we have obtained

)

L —l—(B —-c)a+ Aa sinaT - Ba cosaT, (5)
d 2 2a 2a
de

— =0 —i+ A»cosc:tT+ lBsinctT.
dt 20 2a
For A=B=0 we get the uncontrolled solution, which
testifies the validity of our approach.

Therefore, we analyse the following equivalent

solution

X= o2 Iijmz cos(ot +¢) +e*' (Ccosagt + Dsinagt). (6)
After the integration of Egs. (5) we get
a(t) = Coe™,
y(t) =o,t+ 0, (7)

R:-l- [I—E-)—wl-cosa'l" +-ésinotT :
2 B/ « o

1.
oy, =o+ i(cos'.t)t'l'— 1) +—BsinaT
2a 2
and according to (7) and (6) one obtains
C=Cycos0,, D=-C,sin®,, C,=vC>+D?.

STABILITY CONTROL

From Eq. (6) it is seen that when R<0 the
assumed solution is stabilised more quickly in
comparison to the case of R=0. However, a problem
of stability investigation of the vibro-impact state is
much more subtle. Before the impact number 1, the
mass possesses the velocity x,.. This causes the
following perturbation solution to occur

X +8x, =ekn [(C +8C, )cosa gt +(D + 8D, )sina,yt, ] +
+acos(wt) + 9 +89;). 8)

A new time 1 is measured from the I-th impact
1,=1+01). For example, the next impact occurs for

1, =2 +8T,, where 8T, denotes the period

T=2n/® perturbation.
After some calculations we get

8x, = eR‘[—Caoﬁt, sinoyT+8C, cosagT +
+Dagd1) cosayT + 8D, sinayt + R8t,CcosoyT +
+Ré1,D sinaot] +adg, sin(mt + (p) +
—andt, sin(0t + @),

&%, = ek‘[Rao&:, (Dcosoyt—Csin y7)+RSC, cosayT+
+R3D, sinayt+R281,Ccosayt+R28T, Dsinoyt +
+087, (CoosoyT + Du i 29T) - 8C 0t sinoy T+
+8Dyot cosayT — RET; Catg sin g + R3t) Doty cos gt
-a089, cofwt +¢)—aw8t; co{wt+0).

The following boundary conditions are introduced:
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l. =0, &t, =0, &, =0, 8%, =0d%,,,

_ 2k

I1+1: t=—+81,, 01, =0T, 6%, =0,(10)
©

BXI - 8*(“—])—
After some calculations we have obtained the
following equations

8C, —adop, sinp =0, (11)

RC - a,Ct;
emk[(&pm -89, )__‘%ﬂg_“jg_ﬁ +8C, cos2Pay +
+ 8D, sinZﬁao}—BCM =0

(R? - a})C - 2R Ctga B .\
[0

RrCZBR[(S(pH-l - 5('pl)

+ ROC, cos2Bay + R8D, sin2Pa - 6Cja sinZBao]

+R&6C,,, +8D ;00 — (R, + Dawdy,,, cosp =0,
and R, < las usual denotes the restitution coefficient.
Assuming that

1
8¢, =8¢, + ) T,

i=1

(12)
and introducing

8C, =a,y', 8D, =a,y', 8¢, =a,y' (13)
we get the following characteristic equation

byy? +by +by =0, (14)
where
b, = [_EZBR B_(E:_g_:)_(l_tgju_og + asinq)]ag, (15)

2 _ 2o
b, = e?*® sin ZBaO{RreZBR (R” ~ap)C— 2Ry Ctgagh
®

_(R, + Dao mq,}_,,mwmm y
w

2pr RC —ootgaof
®

x(Rsin2Ba, + oy cos2Pay) +e
—a.otc,e:?"’R sin @ cos2Pog + asin {p[RreZBR(R sin2Ba, +
+0l cosZBao)] — e PRRsin2Ba,,

(R? —al)C- 2Ra ,Ctga N

by =R, sin2Ba,
o

+C

R -a,tga
———;LOBR,‘:‘BR(RsinZBQO +0ocos2Poy )+

—asin (pCOSZBao[R,e4BR (Rsin2Bag + oy cos2ﬁa0)] +

-sin2Bog[R, (R cos2Baty - &g sin 2Bty )]
Note that C(s) should be earlier obtained using a
similar approach but without the perturbations.
Therefore, the problem of stability is reduced to
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consideration of the second order charakteristic
equation (13). If the roots of Eq. (14) are |y, < 1,
then according to the assumed solutions (13) 8C;, 8D,
and 8¢, approach zero for | - +o0, and the solutions
will be asymptotically stable. We can easily estimate
the stability regions, which are defined by the
following inequalities
173 I
by, by +b,
Taking into account Eq. (15) it is easy now to
find parameters of the system (or a delay loop) which

fulfil inequalities (16). Additionally, because of some
mechanical reasons, we have x(t) <s.

<1 and <l. (16)

SIMULATION RESULTS

During numerical simulations we have used the
MATLAB-Simulink package and the MATLAB-
model for equation (1) with the boundary conditions

(Fig. 2).
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Figure 2. MATLAB-Simulink model of the vibro-
impact system presented in Fig. 1

In Fig. 2 additional control of the delay loop is
used. If the magnitude of the signal in this loop is
smaller than |p|, then we know that the stabilised
periodic orbit is achieved. We have taken the
following parameters:

e w2 el

m m
xo =1[m], T=8[s] R, =065 s=04[m],

a= O,IZ[E], b =-0,05 [E]
m m

For these parameters according to (7) we get
R =-0,0598, which shows that the delay loop control



coefficients A and B allow us to obtain quicker
damping of free oscillations in the solution (6) than
without control. Additionally, for the given

parameters we have found from Eq. (14) that |y, ;| are
lying closer to the origin for the system with the
control coefficients than without control.

For the given parameters numerical simulations
confirm analytical predictions. In Fig. 3 phase
portraits of the analysed system are given.

(2)
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Figure 3. Phase portraits of the perturbation decay
with control (a) and without control(b)

It can be seen that with control the transients vanish
much more quickly than in the case without control.
In the case presented above the periodic orbit is
achieved after about 50 sec. for the system analysed
without the delay loop and after 34 sec. for the
system analysed with the delay loop (Ju| < 10'3),
respectively.
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CONCLUDING REMARKS

In this paper we have presented an analytical
approach to estimate the delay control coefficients
for efficient stabilisation or destabilisation of the
periodic orbit under consideration. Although the
efficiency of the method is presented for k=1
(periodic orbit with the same period as the excitation
period) but our considerations are also valid for
subharmonics (for arbitrarily taken k > 1). The
validity of our analytical approach has been testified
by numerical simulations. The obtained results give a
good prognosis for analytical control of two-degree-
of-freedom vibro-impact systems.
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