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ABSTRACT

The paper presents an analytical method of determining one-frequency periodic
oscillations in nonlinear autonomous discrete-continuous mechanical systems
with time delay, on the basis of the asymptotic approach. The periodic
solutions are sought in the form of some particular asymptotic series in
relation to two independent bifurcation parameters - one is related to
nonlinearity, and the other to delay. Some technical problems, which can only
be solved using this approach, are demonstrated.
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INTRODUCTION

One of the important problems of mechanics and automatic control engineering
is active control of the oscillations of the mechanical objects by means of
control units, which can frequently be treated as inertial systems with
concentrated parameters and time delay [1]. The objects subject to control
can be nonlinear mechanical systems with concentrated (further referred to
discrete mechanical systems) or distributed parameters. The latter, referred
to as continuous systems, are dealt with in this paper.

In real control systems of this type, the control unit influences the object
subject to control and the state of the controlled object is monitored only
in certain isolated points. It is usually possible to find controlled
objects, which are governed by partial differential nonlinear equations as
well as control units, which can be modelled by ordinary nonlinear
differential equations.

As has been mentioned above, the systems governed by nonlinear partial and
ordinary equations have many technical applications and they are considered
in this work. It is a continuation of earlier work, where the two-variable
asymptotic expansion technique has been used to analyze periodic oscillations
in nonlinear parametrically excited mechanical systems [2-4], bifurcated
oscillations [5,6] as well as oscillations in discrete-continuous systems.
The presented research develops the approach from [7], where similar systems
were sought in the form of power series of two independent perturbation
parameters. The recurrent set of linear differential equations obtained by
means of comparing the expressions found at the same powers of two
perturbation parameters were then solved using the harmonic balance method.
Using this approach, however, enables one to analyze only the steady states
of the considered mechanical systems. The technique developed here is more
universal. By the use of such a method the steady and unsteady (transient)
oscillation can be analyzed and, as it will be shown in a future paper,
static-type catastrophes during oscillations can be detected.

The presented technique is a generalization of classical asymptotic methods,
which are widely treated in the literature [8-17], to the analysis of
discrete-continuous mechanical systems governed by partial and ordinary
nonlinear equations with two independent parameters.

METHOD

Let us consider a discrete-continuous system governed by the following
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equations:
2
2 “;:Q*X_L L™ (u(t, x)y+ef, {x u(t,x),y(t-p)},
d F
ﬁim Zoﬂpyu-rp)+eF,{y(t—u).u(r—u.z—s)} (1)

subject to the following non-homogeneous boundary conditions
LUt %)) lees=€gn{y(t-w))s  h=1,....m. (2)

The coordinate t denotes time and t{eR; x is the vector of the coordinates and
x€(GUuS), while S is the limiting set of G; u(t,x) is a certain scalar func-
tion determined in the set RX(G and Lf""” is a linear operator of order 2m on
x; L?™ is the linear differential operator of j<2m-1; y and F, are vectors
of an m - dimensional space; A, are constant matrices of (mXm) order; F,, f,
and g,; are functions of y(t-p), u(t-p.§), £€(GuUS), while T, and p are time
delays. Finally, we assume that € and p are small positive parameters.

Thanks to this mathematical formulation of the problem, the presented analyt-
ical approach can be further used for many different discrete - continuous
mechanical systems governed by equations (1).

The problem including non-homogeneous boundary conditions (2) can be reduced
[1,7] to one of homogenecus boundary conditions. Thus we analyze the follow-
ing system:

2
a‘%c_l LE™u(t, x)}y+ef{x,u(t,x), y(t—p)},
d P
L= ) A,y (-T,) P {y (). (- 1).6) )

where v((,x) fulfils the homogeneous boundary conditions
L& u(t,x)y,s=0, h=1,...,m. (4)
From the first equation of system (3), and for €=0, we obtain

L™ (X (x)}y+0X(x)=0,

L&) <=0, h=1,...,m, (S)

while from the other we obtain the following characteristic equation:

,
D(p)=dgz{z,4pe“”°-£p}. (6)

p=0

In the considered dynamical system, oscillations will appear if o,=w?7 and
(or) if the characteristic equation (6) has imaginary eigenvalues p,==iw,.
In this research we shall consider the case where 0,=wj =wj} and the other

eigenvalues of the first equation of the system (5) amount to o, *{(p/q)w,)?,

where p and q are integers. Moreover, it is assumed that the characteristic
equation (6) does not possess imaginary eigenvalues. We seek a one-frequency

solution of the dynamic system (1) with the frequency approaching w, for €+0

and p-+0. To this aim the approach suggested by Krylov-Bogolubov-Mitropolski
will be used. We look for a solution in the form

K L
v(t,x)=a(t)X (x)cosvt+ ) ) e u'Vy{x, a(t). v(t)},

k=11=0

K L
y(z)=kZ”ZOyH{a(z).w(c)}. (7)

where
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da _ 3 kot
— = ) e ulA,{a()).

d
TF=w, ZZ“ZE h'Bula), (8)

and X ,(x) is the solution of the boundary problem (5). Proceeding calcula-
tions with a similar way to the standard KBM-method we have got the following
sequence of the recurrent differential equations

2 %V u(x,a,v)

. op? =LP™(V 0} + 2w, B, X acosy+

2(»1A“Xlsinw+fe.u;(x,a.w).

2
—ya(s w_y D A Y@ 9= T,w )+ F (@, v); 9)
p=

where, for example, for k<2 an 1=1 we have:
f:=f(x'00)'
F=F(x,v,),

of = o f 0%V 1o
=_V10+Z_ - —

aZV]O dA
_Zw'Ama_aaw_(A C:O*-Bfoa))(,cosw

dBo :
—[2A,OB,o+aﬁAw)X13mw,

& Y 1oy !
F ‘_Vlo Z Y(m)t Z—d_'""“Alo'
= i=1 a
few=0,
_oF .
w—malelsmw. (10)

During the calculations v and v are expressed as power series,

N n
y(t-py= S LEYWD ) 5a

n-On-! dt"
o1 d"u(t, n
u(t-p,8) = ,,Zom%ﬁ -w)", - an

and calculations are limited to the value of n=1. After expanding the func-
tion f(., into a Fourier series one obtains

Feoy= Zl{b(-,,,(a)cosnwc(.,n(a>sinnw}. (12)

where

1 I 2n
b"’"(a)=ﬁfo d.xf0 fm(x,a,v)X,(x)cosnypdy,

1 t 2n .
c(.)n(a)=ﬁj{; dxj; Fm(x,a,v)X,(x)sinnypdy. (13)

If we equate the coefficients of X,(x)siny and X,(x)cosy to zero, we obtain
Ay and By, . According to (8) we get
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d
<t>(a)=~C§=€Aw+62A20+E3A30+Euf1“

+e2pAy +ep® A+ 0(en's k+i=4),

d
w(a)=a%=wul+eBm+Esz+EaBm+EuB“

+€?uBy +ep?B ,+ O(etp's k+1=4), (14)

at the initial conditions a(ty)=a,, Y(ly)=V,.

From the first equation of (14) we obtain the dependence a(t), which upon
introduction into the latter equation of (14) enables us to determine the
dependence y{a(t)}. Thanks to this it is possible to analyze the slow tran-

sient processes leading to steady state. The latter are analyzed by assuming
that da/dt=0, which leads to the algebraic equation

G(a,€.1n) = Ap+€An+€ A+ nA+epAy +n°A;,=0. (15)
If the calculations are limited up to order €, we get from (15)
Ap = O, (16)

which enables us to find: (a) one isolated solution; (b) few isolated solu-
tions; (c) no solutions. However, sometimes the phase flow of the considered
starting equations can be very sensitive to changes in the amplitude "a" and
(or) the parameters € and p. For these reasons the full equation (15) should
be taken into consideration. The solution of (16) can serve as a first
approximation for the numerical solution of the full equation (15). Now we
briefly indicate the variety of problems which can be solved using this
approach, and that can not be solved by the use of a single perturbation

method. A. Suppose that the parameter € undergoes slight changes, which are
impossible to avoid. We want to control such changes by treating p as a con-
trol parameter. Inserting a=a’=const into (15) we can find
G(e,n,a®)=G(e,n)=0. Thus, in accordance with the changes of € we can find the
values of p in order to maintain a constant amplitude. B. Suppose that we
would like to have a=a(e) and because the shape of a(e) should be fixed a

priori. The problem is then again reduced to the implicit algebraic functions
of second order. Equation (15) is transformed into the form

Ago€°+2A y e+ Appn®+2A7 €+ 247 11+ A;p=0, (17)

where

. 1 . 1 , 1
A 21=§A21' A zo=§f120v A 11=‘2‘An- (18)
Equation (17) presents implicit second-order algebraic functions if
Az, A’y and A,, are not equal to zero at the same time. The form of the

function is determined by the following expressions:
A:!O A'21 A‘ZO

. . Azp A"y
W=det| A7, A A"y |, V=det A A » S=Az* Az,
. . 2 12
Apg ATy Ap :
W22=A30A10—(A’20)2- Wn:Alzﬂm'(A‘n)z- (19)

By means of shifting the origin of the coordinate system and turning the
axis, it is possible to obtain the following functional forms (expressions W,
V, S are the invariants of such shifts and turns):

1. V>0, AW <O0. Curve (17) is the ellipse €%/ A*+p%/B?*=1.
2. V>0, W=0. Equation (17) can be transformed to €’/A%?+n?/B?=0 and the
solution is point (0,0).

3. ¥>0, AW>0. Curve (17) is an imaginary ellipse (no real curve exists).
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3. V>0, AW >0. Curve (17) is an imaginary ellipse (no real curve exists).
4, V<0, W#0. Equation (17) is the equilateral hyperbola €°/A?-pu?/B*=1.

5. V<0, W=0. The solution of (17) is a pair of intersecting lines
€2/A%-u?/B%*=0.

6. V=0, W#0. The curve governed by (17) is a parabola p?=2pe.

7. V=0, W=0, W, <0 or W,;,>0. Equation (17) presents a pair of parallel
lines p?- A%=0.

8. V=0, W=0, W,;;>0 or W,,>0. The solution of (17) are imaginary parallel
lines p?+ A%=0 (no real curve exists).

9. V=0, W=0, W,;=0 or W,,=0. The solution of (17) is a double line p?=0.

The coefficients of the equation (17) are functions of the amplitude a and
their values are determined by the functions f .,

C. Different branching phenomena can be expected. We can find the hysteresis
variety points defined by the following equations:

G(a,e,.p) = 0, G (a,e,u) = 0, Gg(a,e,p) = 0. (20)

If it is possible to eliminate the amplitude "a" from one of the equations
(20), then the other two enable us to for find the hysteresis points.

The bifurcation and isola variety points are defined by the following three
equations:

G(a.e,u).- 0, G (a,e,pn) = 0, G (a,e,p) = 0. (21)

As mentioned above, equation (21) can possess several different solutions for
"a", Thus m-multiply limit variety can be defined by the following equations:

G(a,,e,p) = 0, ..., G(a,,e,p) = 0,
G.(a,,e,u) = 0, ..., Ga(an,€,p) = O. (22)

Using p as a parameter, we can control the branching phenomena mentioned
above. D. We can find the (e,p) set of parameters for which no real solutions
of (15) exist. Thus, a domain of the assumed solution (7) can be defined in
the two-parameter space. E. Suppose that we want to change the amplitude of
oscillations, but the frequency of oscillations should not undergo any
changes (or it should be controlled only by the linear part of the equa-
tions). In order to fulfil such requirements we have

C(a,e,n) = App+€An+ e Ayp+pA+endy +p®4,,=0,

H(a.€,u) = Bo*+€By+€’Ag+uB) +€uB, +p’B ,=0. (23)

After eliminating "a" from one of equations (23) there remains one equation,
which defines the implicit algebraic function of second order in € and p. One
can freely choose one parameter and then calculate the value of the second
one. Thus, by such an appropriate choice of the parameters € and p the ampli-
tude of the one-frequency oscillations will change, however, the frequency w,
will always remain constant.

CONCLUDING REMARKS

This paper has presented a local analytical method for determining the peri-
odic one-frequengy oscillations in dynamical nonlinear discrete-continuous
systems with delay. This method employed the classical KBM technique (Krylov
- Bogolubov - Mitropolskii) and, in a new approach, the solution is sought in
the form of certain power series in terms of two independent perturbation
parameters € and p. The former is connected with nonlinearity and the latter
with time delay. It is assumed that both parameters are small, and the ampli-
tude of oscillations is small.

Thanks to this method the problem of analyzing the transient nonstationary
states leading to the steady state has been reduced to the analysis of two
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first order differential equations. The first is an equation with separable
variables, and its solution after its introduction into the second enables us
to determine how the frequency of the sought solution changes in time, and
the influence of the parameters pu and ¢, which appear explicitly in the solu-
tion.

A general discussion of the benefits of using the two-perturbation technique
is provided. Such problems, important from the point of view of applications,
are demonstrated. These problems can not be solved by the use of a classical
single-perturbation technique.
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