INFLUENCE OF FRICTION ON THE CHAOTIC DYNAMICS IN COUPLED OSCILLATORS.
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Abstract - A route to chaos in the system with
dry friction is analyzed. In spite of the
complexity of the system, a similar transition
to that discovered in the two-well potential
anharmonic oscillator is described and illus-
trated. Dry friction weakens the chaotic
dynamics and induces the occurrence of stick
and slip transitions during the chaotic wan-
dering of the trajectory in four dimensional
phase space.

1. INTRODUCTION

The aim of this paper is to show the
"qualitative universal" transition to chaos in
a certain subclass of sinusoidally-driven non-
linear oscillators, i. e., systems with a
two-well potential. The question of interest
is whether or not the scenarios leading to
chaotic orbits discovered in simple uncoupled
oscillators are likely also hold for much more
complicated systems, such as coupled nonlinear
sinusoidally driven oscillators. Simulation
experiments show that the potential has two
wells, and that chaotic dynamics will obtain,
in which each of the oscillators jumps between
two wells in an unpredictable way.

2. THE SYSTEM

We consider a system of two coupled
mechanical oscillators, both of which are
externally driven. The governing equations are
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where m, and m, are the masses of the oscil-

lators, C,-Cys and k,-k5 are damping and

stiffness coefficients, respectively ¢, and g,
are the amplitudes of the exciting forces with
corresponding frequencies w, and w,, and ¢
denotes a phase shift between the exciting
forces.

In nondimensional form we have
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Using the transformations (3), the nineteen
parameters of equations (1) are reduced to
fourteen parameters in (2).

Such a general system has been investigated
earlier by the authors [1-3] using a systemat-
ical numerical approach. Transitions between
quasiperiodic, strange chaotic and strange
non-chaotic attractors have been reported as
well as some special chaotic dynamics has been
discussed and illustrated. Here an attention
is focused on the influence of friction of the
chaotic dynamics on the mentioned above sys-
tem.

3. NUMERICAL ANALYSIS
We define: f,=um, g,
F=(k,+k3)x1-k3x2+k2x?—c3x2—qlcosunl, (4)

When x,=0 and | F |[<|{F4 |, the first oscillator
is in a stick state. During the transition
from a slip-state to a stick-state, an accel-
eration jump occurs. During an exit from a
stick-state to a slip-state the acceleration
is continuous, but a jump in the third deriv-
ative of the displacement appears. The veloc-
ity in both cases is always continuous. During
“the transition over a stick area", but
without sticking, the acceleration jump also
occurs. When a regular transition, however,
from a slip-state to a stick takes place with
[ EI<I(F 50) . |r the one eigenvalue of the
Jacobi matrix is equal to zero. When

[ F1=1(F ).y | @and the acceleration jump does
not appear, the Jacobi matrix is not singular.
The following equations govern the dynamics in
the stick-state:
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with the following transition-condition
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We consider the behavior of the system (2)
for the following fixed parameters:
v=M=K=1.0, x,;=x,=-0.816326, ¢$=0.0,

Y, =v,=0.3, 8,=0.05, B,=0.2, and for two val-
ues of friction R.

Example 1 (R=0.05).

We take o, =a,=0.01 and a3=%x;=0.3. For
these parameters and without friction (R=0),
the system exhibits intermittent chaos. Fric-
tion dampens the chaotic dynamics of the
orbits and for R=0.05 we find a quasiperiodic
attractor. In the neighborhood of these param-
eters (for o,=0,=0.05 and a;=x3;=0.3), a
periodic attractor is found. An increase in «,
(a,=a,) results in an increase in the magni-
tude of the self-excited oscillations. The
periodic orbit grows and finally leads to
intersections of the stable and unstable man-
ifolds and a trajectory starts to wander in an
unpredictable way between two potential wells.
This situation is illustrated for a,=a,=0.2
in Fig.l.
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Fig.l. Time history of a strange chaotic
attractor (R=0.05).

Example 2 (R=0.1).

In the second example we analyze the influ-
ence of the coupling between two oscillators.
The numerical calculations have been carried
out for the same parameters as in Example 1
and additionally for R=0.1 and a,=a,=0.2.
When two oscillators are strongly coupled
(a;=2.0, x3=0.3), a periodic orbit is found.
This orbit lies to the right of the origin.
However, to the left of the origin there is
also another small periodic orbit. These two
orbits lie in two isolated potential wells.
Decreasing «; causes the trajectory to move

from the potential well and start to wander
between the two potential wells (Fig.2). The
escape, however, from one of the wells to the
other is rather rare. The possibility of it
occurring increases with a further decrease in
®y. For example, for a;=0.3, one of the pro-
jections of the Poincaré map shows a very com-
plicated dynamics (Fig.3).

In order to understand how two oscillators
move in a chaotic manner, two time histories
(for relatively long time intervals of the
same chaotic attractors) are presented in
Fig.4. In this figure one can also observe
stick states. These states correspond the a
very short horizontal parts of §,(t).
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Fig.3. A strange chaotic attractor for a,;=0.3
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Fig.4. Two different time histories from the

same chaotic attractor.

4. CONCLUSIONS

In the six-dimensional nonlinear mechanical
systgm with friction that was investigated,
quasiperiodic and chaotic attractors are
detected. We have discussed and illustrated
that in this case, the route to chaos is the
same as in the simple two-well potential,
sinusoidally-driven oscillator. An investiga-
tion of the influence of dry friction on the
chaotic behavior of two coupled oscillators
shows that increasing the friction weakens the
chaotic dynamics of the orbits. During the
chaotic motion of the first oscillator,
stick-slip transitions are observed.
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