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Abstract. In many engineering scenarios, self-excited vibrations lead to undesir-
able results. Aeroelastic flutter, machine-tool chatter and flow-induced instability 
of structures are some well-known examples. Such vibrations are typically char-
acterised by robust attracting limit cycles which makes their control a difficult 
task. This article outlines different strategies for the control of undesirable self-
excited vibrations in smooth and non-smooth engineering systems. The control 
of flow-induced vibration by using parametric excitation in structure elasticity is 
demonstrated first. It is shown that the amplitude jump due to internal resonance 
between the wake and the structure in the lock-in region can be mitigated by para-
metric excitation. Parametric excitation leads to the formation of newer internal 
resonance regions which can be made to fall outside the original lock-in region 
by tuning the frequency ratio. Recent work on control of flow induced vibration 
using bistable nonlinear energy sink is outlined next. The bistable sink suppresses 
internal resonance in lock-in region and outperforms cubic sinks in control per-
formance. BNES partitions the lock-in region into chaotic and non-chaotic sub-
regions with an amplitude jump between the two. The article next deals with the 
control of non-smooth friction-induced vibration. The suppression of stick-slip 
oscillations in a three degree-of-freedom disc brake model is outlined. The dis-
continuity induced bifurcation responsible for this suppression is also illustrated 
and discussed. 
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1 Introduction 

Self-excited oscillations are very common in natural and engineering systems. The heart 
may be considered a self-excited oscillator and there have been various efforts, old and 
new, to arrive at self-excited models of human heart [1, 2]. Self-excited models have 
also found extensive applications in neuroscience [3]. Self-excitation also plays a very 
important role in the physics of bowed and wind musical instruments [4]. 

Perhaps the most well-known instance of self-excited oscillation in engineering is 
the collapse of the suspension bridge over the Tacoma Narrows in Washington in 1940.
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It is an example of self-excited vibration caused by flow-induced instability which has 
been studied extensively since [5]. This example also brings to focus the need for robust 
strategies to control self-excited vibrations. Flutter of aircraft wings is another well-
known and dangerous example of self-excited vibration [6]. Machine tool chatter has 
also been recognised long since as an example of self-excited vibration [7]. Self-excited 
vibrations also happen in non-smooth systems. Friction induced vibrations in vehicle 
braking systems and in other types of contact problems serve as important examples [8]. 

Self-excited oscillations can be dangerous in many engineering situations (like wing 
flutter and flow-induced instability) and calls for efficient control strategies. Devising 
such strategies is a difficult task because of the robustness of self-excited vibrations due 
to the presence of highly stable attracting limit cycles. A systematic effort to develop 
a general theory of control of self-excited oscillations was made by Ales Tondl and 
his co-workers. Their strategy was based on the use of parametric excitation to quench 
self-excited vibration [9]. Subsequent work showed that complete quenching of self-
excited oscillations can be brought about by tuning the frequency of parametric excitation 
[10]. Tondl called such suppression parametric anti-resonance and derived frequency 
conditions pertaining to it [11]. 

Other strategies have also been proposed to control self-excited oscillations in differ-
ent scenarios. Nonlinear energy sink (NES) has been shown to be effective in controlling 
flow induced vibration [12]. It has also been demonstrated that NES fitted with a type 
of quadratic damping mechanism can be used to control self-excited vibrations in fluid 
carrying pipes [13]. Dohnal and Tondl [14] have also used parametric inertia excitations 
to control flutter. The possibility of controlling machine tool chatter by using parametric 
excitation has also been experimentally demonstrated [15]. 

Control mechanisms for self-excited oscillations in non-smooth systems have also 
been proposed. Delayed feedback mechanisms have become popular for the control 
of friction induced vibrations [16]. It has also been shown that low amplitude, high 
frequency forces, sometimes called dither, given normal to the direction of the frictional 
force can be an effective way to suppress friction induced vibrations [17]. 

In this article we outline recent work on strategies for the control of self-excited 
vibration in smooth and non-smooth systems. In Sect. 2, we demonstrate the ability 
of parametric excitation to control vortex induced vibrations. This section generalises 
Tondl’s idea to the control of flow induced instabilities. We use flow induced vibration 
model with acceleration coupling and introduce parametric excitation in primary struc-
ture stiffness. Section 3 outlines recent work on the use of bistable nonlinear energy sink 
(BNES) to control self-excited flow induced vibrations. It is shown that BNES leads 
to vibration suppression in the lock-in region and that it outperforms the purely cubic 
NES. Recent work on control of non-smooth self-excited vibration is outlined in Sect. 4. 
Normal harmonic excitation is used to suppress stick-slip vibrations in a three degree-
of-freedom disc brake model. Some important conclusions regarding vibration control 
in self-excited systems are drawn in Sect. 5.
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2 Control of Flow Induced Vibration Using Parametric Excitation 

The dimensionless governing equations for flow induced vibration are given by the 
following coupled second order ODEs [18] 

ÿ + 2ζ  δ  + γ

μ 
ẏ + δ2y = Mq (1)

q̈ + ε q2 − 1 q̇ + q = Aÿ (2)

Equation (1) corresponds to the linear structure and Eq. (2) corresponds to the wake 
oscillator. Here, ζ is the structure damping, δ denotes the natural frequency of the struc-
ture, γ is the stall parameter, μ is a dimensionless mass ratio, M is essentially a coupling 
coefficient that scales the effect of the wake on the structure. In the wake oscillator equa-
tion, ε ∈ [0, 1] is a small parameter and A is the acceleration coupling coefficient. For 
the parameter values ζ = 0.0031,  γ  = 0.8, M = 0.0002,  ε = 0.3,A = 12 and δ = 1, 
the change of structural amplitude with the reduced velocity Ur = 1 

St.δ is given in Fig. 1. 
Here, St. is the Strouhal number with the value St. = 0 .2. 

Fig. 1. Variation in structural amplitude as a function of reduced velocity. 

The lock-in region in which the amplitude rises as a consequence of internal reso-
nance between the wake oscillator and the structure is clearly seen in the figure about 
Ur = 5. It can be observed that the amplitude rises by a factor of approximately 20 about 
this value. This will lead to catastrophic results which need to be addressed, especially 
if the range of operation of the system falls around this value. 

For this purpose, we introduce parametric excitation in structural stiffness. The 
governing equation of motion then becomes 

ÿ + 2ζ  δ  + γ

μ 
ẏ + δ2(1 + α cos ωt) y = Mq (3)

q̈ + ε q2 − 1 q̇ + q = Aÿ (4)
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We introduce the parameter r = ω 
δ which is the ratio between the parametric excita-

tion frequency and the natural frequency of the structure. The vibration attenuation due 
to parametric excitation is studied based on this parameter. Figure 2 shows the variation 
of structural amplitude as a function of Ur for parametric excitation amplitude α = 0 .5
and frequency ratio r = 0.145. It is clear from the figure that the amplitude in the lock-in 
region is suppressed by a factor of 4. Although the parametric excitation introduces new 
lock-in regions either side of the original lock-in region, it is possible to push these 
regions out of the original lock-in region by adjusting the value of α and r. 

Fig. 2. Comparison of variation in structural amplitude with reduced velocity for systems without 
and with parametric excitation. 

Figure 3 shows the comparison of amplitudes with and without parametric excitation 
for the case presented in Fig. 2,  a  t Ur = 5. 

The mitigation effect of parametric excitation can be enhanced by tuning the value 
of the frequency ratio r. Figure 4 shows the case of vibration mitigation at Ur = 5 and 
r = 0.943. It is seen that this frequency ratio gives far better mitigation than the previous 
one. Figure 4 clearly shows that parametric excitation may be used as a control strategy 
in self-excited systems with good effect.



Control of Self-excited Vibrations 7

Fig. 3. Suppression of vibration amplitude in the lock-in region at Ur = 5. Blue curve for the 
system without parametric excitation and red line for that with parametric excitation. 

Fig. 4. Suppression of vibration amplitude at Ur = 5 for frequency ratio r = 0.943. 

3 Control of Flow Induced Vibration Using Bistable Nonlinear 
Energy Sink 

Different designs of NES have been used to suppress flow induced vibration [12, 13]. 
The present authors have recently demonstrated [19] the use of BNES to control flow 
induced vibration. The BNES is connected to the structure and its parameters are tuned 
so as to suppress the vibration imparted to the structure by the wake oscillations. The 
governing equations of the model in non-dimensional form are given by 

(1 − β)η1 + 2ζ  ωη1 − 2ζnesω η2 − η1 − α(η2 − η1) + ω2η1 − ω2γnes(η2 − η1)
3 = ql − 1 (5)
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βη2 − 2ζnesω η1 − η2 + α(η2 − η1) − γnesω2(η1 − η 2)3 = 0 (6)

q + λ q2 − 1 q + q = P η1 (7)

Here, η1,  η  2 and q are the non-dimensional displacements of primary structure, BNES 
and wake oscillator, respectively. The non-dimensional parameters occurring in the equa-
tion are: β is the mass of BNES, ζ and ω are the damping and natural frequency of the 
structure respectively, q is the coupling coefficient between the wake and the structure, 
is the lift coefficient, ζnes, α and γnes are viscous damping, linear and nonlinear stiffness 
coefficients of BNES, λ is the strength of nonlinearity of the wake oscillator and P is 
the acceleration coupling coefficient. 

Fig. 5. Mitigation of amplitude of the structure by the use of BNES with non-dimensional mass 
β = 0.01. Reprinted with permission from [19]. © 2025, Elsevier B.V. All rights are reserved. 

Figure 5 shows the comparison of structure amplitude with no NES, with cubic NES 
attached to the structure and with BNES attached. Other parameters are kept the same 
for comparison. It is clear that BNES causes considerable suppression of the structure 
amplitude and outperforms pure cubic NES. Two regimes are observed in Fig. 5 for 
structure amplitude when connected to BNES. To further analyse the partition of the 
lick-in region in the case of BNES, we plot the Poincare points and largest Lyapunov 
exponent for the same range of U in Fig. 6.
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Fig. 6. Dynamic behaviour of the structure as reduced velocity U is varied in the range [0.8, 1.2 ]. 
Reprinted with permission from [19]. © 2025, Elsevier B.V. All rights are reserved. 

Figure 6 shows that the lower branch of amplitudes shown in Fig. 5 is associated with 
chaotic solution. This solution branch bifurcates into a periodic one inside the lock-in 
region itself. But the amplitude of this periodic branch is significantly lesser than the 
original resonant amplitude and the amplitude obtained by using cubic NES. This shows 
that BNES is an efficient strategy to mitigate high amplitude flow induced vibrations in 
the lock-in region. 

4 Control of Stick-Slip Vibrations in a Disc Brake Model 

Control of stick-slip oscillations in self-excited non-smooth systems may be accom-
plished by the use of small amplitude normal excitation to the mass [20]. This may be 
demonstrated in a non-smooth disc brake model with three degrees of freedom shown 
in Fig. 7.  Mas  s m1 models the rotating disc, whereas m2 models the brake calliper. The 
brake pad in contact with the rotating disc during the braking process is modelled by mass 
m3. The brake pad undergoes stick-slip oscillation in contact which is to be mitigated 
by the application of normal force F0 cos t to the brake pad. 

Fig. 7. Three degrees of freedom non-smooth model of a disc brake. Reprinted with permission 
from [20]. © 2025, Elsevier B.V. All rights are reserved.
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The governing equations of the model are given by 

m1ẍ1 + c1 ẋ1 + k1x1 = F f (8)

m2ẍ2 + (c2 + c3)ẋ2 − c3 ẋ3 + (k2 + k3)x2 − k3 x3 = 0 (9)

m3ẍ3 − c3 ẋ2 + c3 ẋ3 − k3x2 + k3x3 =  −  Ff (10)

Here, Ff is the frictional force between the brake pad and the disc and is governed 
by Ff = μ(vr)(m3g + F0 cos t), where μ is the coefficient of friction which is a 
function of the relative velocity vr . It thus emerges that the normal force modulates the 
frictional force acting between the mass and the disc and causes a situation similar to 
that of parametric excitation. We consider Stribeck frictional model in the present case 
according to which 

μ(vr) = μssgn(vr) − γ1vr + γ 3v3r (11)

The relative velocity is given by vr = ẋ3 − ẋ1 − vb. 
Figure 8 shows the state space of mass m3 corresponding to the brake pad. Orbits 

corresponding to different values of non-dimensionalised forcing frequency ω are shown 
in the figure. It is observed that for larger value of frequency, the width of the sticking 
region is significant, which leads to prominent stick-slip orbits. But when the forcing 
frequency reaches ω ≈ 1 .4, the orbit starts transversally intersecting the surface of 
discontinuity. This is due to switching-sliding bifurcation [20] which leads to the decrease 
in the sticking portion of the orbit. As the frequency is still reduced, we can see from 
the figure that the sticking portion of the orbit is significantly reduced. This leads to the 
suppression of stick-slip vibrations. It is thus clear that the normal force on the brake 
pad which causes modulation in the frictional force may be used to mitigate stick-slip 
oscillations. 

Fig. 8. Suppression of stick-slip oscillation by varying the frequency of the normal force applied 
to the brake pad. Reprinted with permission from [20]. © 2025, Elsevier B.V. All rights are 
reserved.
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5 Conclusions 

This article outlined the use of parametric and external excitation to mitigate self-excited 
vibrations in smooth and non-smooth systems. It also dealt with the use of BNES to 
suppress flow-induced vibration. Parametric excitation comes across as a very efficient 
method for the mitigation of self-excited systems. It was seen that the introduction of 
parametric excitation leads to newer internal resonance regions on both sides of the 
original lock-in region. Nevertheless, preliminary results are still very encouraging as 
it is possible to push these resonance peaks outside the original lock-in region. This 
leads to the suppression of amplitude in the lock-in region. The use of BNES, coupled 
to the structure, also gives good vibration suppression performance inside the lock-in 
region. It easily outperforms cubic NES in amplitude mitigation. It was also seen that 
BNES coupled structure partitions the lock-in region into a chaotic and non-chaotic one. 
Normal harmonic external excitation was seen to be successful in suppressing the stick-
slip vibrations in the disc brake model. The external excitation modulates the frictional 
force and bring about a situation similar to parametric excitation. Switching-sliding 
bifurcation is what causes the decrease in the width of the sticking region which in turn 
leads to suppression of stick-slip oscillation. 
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