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Abstract. In many engineering scenarios, self-excited vibrations lead to undesir-
able results. Aeroelastic flutter, machine-tool chatter and flow-induced instability
of structures are some well-known examples. Such vibrations are typically char-
acterised by robust attracting limit cycles which makes their control a difficult
task. This article outlines different strategies for the control of undesirable self-
excited vibrations in smooth and non-smooth engineering systems. The control
of flow-induced vibration by using parametric excitation in structure elasticity is
demonstrated first. It is shown that the amplitude jump due to internal resonance
between the wake and the structure in the lock-in region can be mitigated by para-
metric excitation. Parametric excitation leads to the formation of newer internal
resonance regions which can be made to fall outside the original lock-in region
by tuning the frequency ratio. Recent work on control of flow induced vibration
using bistable nonlinear energy sink is outlined next. The bistable sink suppresses
internal resonance in lock-in region and outperforms cubic sinks in control per-
formance. BNES partitions the lock-in region into chaotic and non-chaotic sub-
regions with an amplitude jump between the two. The article next deals with the
control of non-smooth friction-induced vibration. The suppression of stick-slip
oscillations in a three degree-of-freedom disc brake model is outlined. The dis-
continuity induced bifurcation responsible for this suppression is also illustrated
and discussed.
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1 Introduction

Self-excited oscillations are very common in natural and engineering systems. The heart
may be considered a self-excited oscillator and there have been various efforts, old and
new, to arrive at self-excited models of human heart [1, 2]. Self-excited models have
also found extensive applications in neuroscience [3]. Self-excitation also plays a very
important role in the physics of bowed and wind musical instruments [4].

Perhaps the most well-known instance of self-excited oscillation in engineering is
the collapse of the suspension bridge over the Tacoma Narrows in Washington in 1940.
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It is an example of self-excited vibration caused by flow-induced instability which has
been studied extensively since [5]. This example also brings to focus the need for robust
strategies to control self-excited vibrations. Flutter of aircraft wings is another well-
known and dangerous example of self-excited vibration [6]. Machine tool chatter has
also been recognised long since as an example of self-excited vibration [7]. Self-excited
vibrations also happen in non-smooth systems. Friction induced vibrations in vehicle
braking systems and in other types of contact problems serve as important examples [8].

Self-excited oscillations can be dangerous in many engineering situations (like wing
flutter and flow-induced instability) and calls for efficient control strategies. Devising
such strategies is a difficult task because of the robustness of self-excited vibrations due
to the presence of highly stable attracting limit cycles. A systematic effort to develop
a general theory of control of self-excited oscillations was made by Ales Tondl and
his co-workers. Their strategy was based on the use of parametric excitation to quench
self-excited vibration [9]. Subsequent work showed that complete quenching of self-
excited oscillations can be brought about by tuning the frequency of parametric excitation
[10]. Tondl called such suppression parametric anti-resonance and derived frequency
conditions pertaining to it [11].

Other strategies have also been proposed to control self-excited oscillations in differ-
ent scenarios. Nonlinear energy sink (NES) has been shown to be effective in controlling
flow induced vibration [12]. It has also been demonstrated that NES fitted with a type
of quadratic damping mechanism can be used to control self-excited vibrations in fluid
carrying pipes [13]. Dohnal and Tondl [14] have also used parametric inertia excitations
to control flutter. The possibility of controlling machine tool chatter by using parametric
excitation has also been experimentally demonstrated [15].

Control mechanisms for self-excited oscillations in non-smooth systems have also
been proposed. Delayed feedback mechanisms have become popular for the control
of friction induced vibrations [16]. It has also been shown that low amplitude, high
frequency forces, sometimes called dither, given normal to the direction of the frictional
force can be an effective way to suppress friction induced vibrations [17].

In this article we outline recent work on strategies for the control of self-excited
vibration in smooth and non-smooth systems. In Sect. 2, we demonstrate the ability
of parametric excitation to control vortex induced vibrations. This section generalises
TondI’s idea to the control of flow induced instabilities. We use flow induced vibration
model with acceleration coupling and introduce parametric excitation in primary struc-
ture stiffness. Section 3 outlines recent work on the use of bistable nonlinear energy sink
(BNES) to control self-excited flow induced vibrations. It is shown that BNES leads
to vibration suppression in the lock-in region and that it outperforms the purely cubic
NES. Recent work on control of non-smooth self-excited vibration is outlined in Sect. 4.
Normal harmonic excitation is used to suppress stick-slip vibrations in a three degree-
of-freedom disc brake model. Some important conclusions regarding vibration control
in self-excited systems are drawn in Sect. 5.
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2 Control of Flow Induced Vibration Using Parametric Excitation

The dimensionless governing equations for flow induced vibration are given by the
following coupled second order ODEs [18]

y + (2;8 + g)y + 8%y = Mg (1)

g+e(q?=1)q+q=4y @)

Equation (1) corresponds to the linear structure and Eq. (2) corresponds to the wake
oscillator. Here, ¢ is the structure damping, § denotes the natural frequency of the struc-
ture, y is the stall parameter, n is a dimensionless mass ratio, M is essentially a coupling
coefficient that scales the effect of the wake on the structure. In the wake oscillator equa-
tion, ¢ € [0, 1] is a small parameter and A is the acceleration coupling coefficient. For
the parameter values ¢ = 0.0031,y = 0.8, M = 0.0002,¢ =0.3,A =12and § =1,
the change of structural amplitude with the reduced velocity U, = St_le 1s given in Fig. 1.
Here, St. is the Strouhal number with the value St. = 0.2.

0.07

0.06
0.05f
0.04
0.03

0.02

0.01F

3.5 4 4.5 5 5.5 6 6.5
u

r

Fig. 1. Variation in structural amplitude as a function of reduced velocity.

The lock-in region in which the amplitude rises as a consequence of internal reso-
nance between the wake oscillator and the structure is clearly seen in the figure about
U, = 5. It can be observed that the amplitude rises by a factor of approximately 20 about
this value. This will lead to catastrophic results which need to be addressed, especially
if the range of operation of the system falls around this value.

For this purpose, we introduce parametric excitation in structural stiffness. The
governing equation of motion then becomes

v+ (2;5+ %)ymz(l + acoswr)y = Mg (3)

q+e(q?—1)a+q=A4 4
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We introduce the parameter » = ¢ which is the ratio between the parametric excita-
tion frequency and the natural frequency of the structure. The vibration attenuation due
to parametric excitation is studied based on this parameter. Figure 2 shows the variation
of structural amplitude as a function of U, for parametric excitation amplitude o« = 0.5
and frequency ratio r = 0.145. It is clear from the figure that the amplitude in the lock-in
region is suppressed by a factor of 4. Although the parametric excitation introduces new
lock-in regions either side of the original lock-in region, it is possible to push these
regions out of the original lock-in region by adjusting the value of o and r.
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Fig. 2. Comparison of variation in structural amplitude with reduced velocity for systems without
and with parametric excitation.

Figure 3 shows the comparison of amplitudes with and without parametric excitation
for the case presented in Fig. 2, at U, = 5.

The mitigation effect of parametric excitation can be enhanced by tuning the value
of the frequency ratio r. Figure 4 shows the case of vibration mitigation at U, = 5 and
r = 0.943. It is seen that this frequency ratio gives far better mitigation than the previous
one. Figure 4 clearly shows that parametric excitation may be used as a control strategy
in self-excited systems with good effect.



Control of Self-excited Vibrations 7

0.08

0.06

0.04

NS

-0.02

y(t)

o

-0.04

2950 2955 2960 2965 2070 2975 2980 2985 2990 2995 3000
time

Fig. 3. Suppression of vibration amplitude in the lock-in region at U, = 5. Blue curve for the
system without parametric excitation and red line for that with parametric excitation.
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Fig. 4. Suppression of vibration amplitude at U, = 5 for frequency ratio r = 0.943.

3 Control of Flow Induced Vibration Using Bistable Nonlinear
Energy Sink

Different designs of NES have been used to suppress flow induced vibration [12, 13].
The present authors have recently demonstrated [19] the use of BNES to control flow
induced vibration. The BNES is connected to the structure and its parameters are tuned
so as to suppress the vibration imparted to the structure by the wake oscillations. The
governing equations of the model in non-dimensional form are given by

(1 = By +2¢am) — 2neso(nhy — 1)) — a(my — n1) + @*n1 — @ Ynes(a —m)> =gl =Ty (5)
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BNy — 28neso(n) — 15) + (2 — 1) = Vues@ (01 — m2)*> =0 (6)

q + k(qz —~ 1)61’ +q=Pnf (7)

Here, 11, ny and g are the non-dimensional displacements of primary structure, BNES
and wake oscillator, respectively. The non-dimensional parameters occurring in the equa-
tion are: B is the mass of BNES, ¢ and w are the damping and natural frequency of the
structure respectively, g is the coupling coefficient between the wake and the structure, I"
is the lift coefficient, ¢y, o and yy,e5 are viscous damping, linear and nonlinear stiffness
coefficients of BNES, A is the strength of nonlinearity of the wake oscillator and P is
the acceleration coupling coefficient.
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Fig. 5. Mitigation of amplitude of the structure by the use of BNES with non-dimensional mass
B = 0.01. Reprinted with permission from [19]. © 2025, Elsevier B.V. All rights are reserved.

Figure 5 shows the comparison of structure amplitude with no NES, with cubic NES
attached to the structure and with BNES attached. Other parameters are kept the same
for comparison. It is clear that BNES causes considerable suppression of the structure
amplitude and outperforms pure cubic NES. Two regimes are observed in Fig. 5 for
structure amplitude when connected to BNES. To further analyse the partition of the
lick-in region in the case of BNES, we plot the Poincare points and largest Lyapunov
exponent for the same range of U in Fig. 6.
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Fig. 6. Dynamic behaviour of the structure as reduced velocity U is varied in the range [0.8, 1.2].
Reprinted with permission from [19]. © 2025, Elsevier B.V. All rights are reserved.

Figure 6 shows that the lower branch of amplitudes shown in Fig. 5 is associated with
chaotic solution. This solution branch bifurcates into a periodic one inside the lock-in
region itself. But the amplitude of this periodic branch is significantly lesser than the
original resonant amplitude and the amplitude obtained by using cubic NES. This shows
that BNES is an efficient strategy to mitigate high amplitude flow induced vibrations in
the lock-in region.

4 Control of Stick-Slip Vibrations in a Disc Brake Model

Control of stick-slip oscillations in self-excited non-smooth systems may be accom-
plished by the use of small amplitude normal excitation to the mass [20]. This may be
demonstrated in a non-smooth disc brake model with three degrees of freedom shown
in Fig. 7. Mass m| models the rotating disc, whereas m> models the brake calliper. The
brake pad in contact with the rotating disc during the braking process is modelled by mass
m3. The brake pad undergoes stick-slip oscillation in contact which is to be mitigated
by the application of normal force F( cos 2t to the brake pad.

Focos 1\ m,g

Fig. 7. Three degrees of freedom non-smooth model of a disc brake. Reprinted with permission
from [20]. © 2025, Elsevier B.V. All rights are reserved.
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The governing equations of the model are given by

mixy + c1x) + kixy = Fy (8)
mXy + (¢ + ¢3)ip — c3i3 + (ko + k3)x2 — k3x3 =0 )
m3X3 — c3X%y + c3x3 — k3xp + k3x3 = —Fy (10)

Here, Fy is the frictional force between the brake pad and the disc and is governed
by Fy = wu(v,)(m3g + Focos 1), where p is the coefficient of friction which is a
function of the relative velocity v,. It thus emerges that the normal force modulates the
frictional force acting between the mass and the disc and causes a situation similar to
that of parametric excitation. We consider Stribeck frictional model in the present case
according to which

() = wssgn(vy) — yivy + yav? (11)

The relative velocity is given by v, = X3 — X1 — vp.

Figure 8 shows the state space of mass m3 corresponding to the brake pad. Orbits
corresponding to different values of non-dimensionalised forcing frequency w are shown
in the figure. It is observed that for larger value of frequency, the width of the sticking
region is significant, which leads to prominent stick-slip orbits. But when the forcing
frequency reaches w & 1.4, the orbit starts transversally intersecting the surface of
discontinuity. This is due to switching-sliding bifurcation [20] which leads to the decrease
in the sticking portion of the orbit. As the frequency is still reduced, we can see from
the figure that the sticking portion of the orbit is significantly reduced. This leads to the
suppression of stick-slip vibrations. It is thus clear that the normal force on the brake
pad which causes modulation in the frictional force may be used to mitigate stick-slip
oscillations.
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Fig. 8. Suppression of stick-slip oscillation by varying the frequency of the normal force applied
to the brake pad. Reprinted with permission from [20]. © 2025, Elsevier B.V. All rights are
reserved.
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5 Conclusions

This article outlined the use of parametric and external excitation to mitigate self-excited
vibrations in smooth and non-smooth systems. It also dealt with the use of BNES to
suppress flow-induced vibration. Parametric excitation comes across as a very efficient
method for the mitigation of self-excited systems. It was seen that the introduction of
parametric excitation leads to newer internal resonance regions on both sides of the
original lock-in region. Nevertheless, preliminary results are still very encouraging as
it is possible to push these resonance peaks outside the original lock-in region. This
leads to the suppression of amplitude in the lock-in region. The use of BNES, coupled
to the structure, also gives good vibration suppression performance inside the lock-in
region. It easily outperforms cubic NES in amplitude mitigation. It was also seen that
BNES coupled structure partitions the lock-in region into a chaotic and non-chaotic one.
Normal harmonic external excitation was seen to be successful in suppressing the stick-
slip vibrations in the disc brake model. The external excitation modulates the frictional
force and bring about a situation similar to parametric excitation. Switching-sliding
bifurcation is what causes the decrease in the width of the sticking region which in turn
leads to suppression of stick-slip oscillation.
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