
Chapter 13
Topological Optimization of Multilayer
Structural Elements of MEMS/NEMS
Resonators with an Adhesive Layer Subjected to
Mechanical Loads

Anton V. Krysko, Jan Awrejcewicz, Pavel V. Dunchenkin, Maxim V. Zhigalov, and
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Abstract The paper considers the problem of topological optimization of multi-

layer structural elements of MEMS/NEMS resonators with an adhesive layer under

the action of mechanical loads. The purpose of this work is to obtain a design solu-

tion that is least susceptible to destruction due to an increase in the rigidity of the

elements to be joined and, as a consequence, providing smoothing of stress peaks in

the adhesive layer. To demonstrate the operation of the topological optimization al-

gorithm for this class of problems, several examples are given that show significant

improvements in the set target indicators. The problems were solved by the finite

element method with the application of the sliding asymptotes method.
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13.1 Introduction

Adhesive bonding technology, alone or in combination with mechanical fastening,

can significantly improve the mechanical performance of a structure, both in terms
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of rigidity and in terms of strength and fatigue (Hart-Smith, 1982; Kelly, 2006;

da Silva et al, 2018). Adhesive joints have advantages over alternative bonding

methods (bolted or riveted), as they provide stress distribution over a wider area

of the joints, minimal thermal effect (as opposed to welding), high rigidity and high

strength-to-weight ratio. In addition, adhesives have better corrosion resistance as

well as good damping performance. In contrast to the uneven distribution of loads

when joining fasteners, the transfer of load between glued or soldered components

is continuous throughout the entire layer. This allows simpler and lighter connec-

tions to be used. In other words, the adhesive bond provides the ability to reduce

the weight of the structure while providing mechanical strength. Based on this, such

connections are increasingly used in the design of mechanical systems (Adams et al,

1997; Dixon, 2005; Watson, 2005).

Quite a lot of studies have been devoted to the problem of increasing the strength

of adhesive joints. Most of them were based on parametric optimization, where it

was assumed that the design variables were changed in a selected range using spec-

ified intervals Groth and Nordlund (1991); Hildebrand (1994); Rispler et al (2000);

Taib et al (2006). For example, in da Silva et al (2011), such factors influencing the

strength of the joint, as the adhesive properties of the material, the thickness of the

intermediate layer, the contact area, and residual stresses, were determined.

In recent years, a number of works have been devoted to the problem of improv-

ing and researching structures with an adhesive layer, including research based on

analytical formulations (Spaggiari and Dragoni, 2014; da Silva and Lopes, 2009),

numerical modeling (Pires et al, 2003; Nimje and Panigrahi, 2014) or a combination

of these two methods (das Neves et al, 2009; das Neves et al, 2009; Carbas et al,

2014). In all the studies considered, modifications were made to the shape of the

elements to be joined or the shape and location of the adhesive layer.

Awrejcewicz et al (2020) developed a technique based on a combination of topo-

logical optimization methods (moving asymptotes method) and a finite element

method for obtaining an optimal structure to reduce the stress level in a soldered

joint. Krysko et al (2019) constructed a mathematical model and a technique for

solving a wide class of problems of topological optimization of the adhesive layer

under the action of both mechanical and thermal loads to obtain an optimal mi-

crostructure and gradient properties in order to reduce the stress level in it. It is

shown that it is possible to achieve almost uniform shear stresses in the solder, aris-

ing due to the difference in the coefficients of linear thermal expansion. Krysko et al

(2018) investigated the nonlinear dynamics of inhomogeneous beams with an op-

timal distribution of material over thickness and length. Comparison of static and

dynamic results of optimal and homogeneous beams for different values of the scale

parameter of material length and temperature was carried out. The influence of the

scale parameter of the length of the material on the chaotic behavior of the beam

was investigated. Scenarios of transition to chaos were constructed for various val-

ues of temperature, both for a homogeneous beam and for a beam with an optimal

microstructure.

Zhu et al (2017) presented a systematic approach to the design of membrane

structures for a piezoresistive pressure sensor using topology optimization. The
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design problem was interpreted as the problem of optimizing a three-dimensional

topology with calculated dependent loads, in which the dependence was considered

due to the transferred loads. The topological optimization problem was solved using

the popular SIMP (Solid Isotropic Material with Penalization) method.

A topological optimization method for a local resonator was presented in Jung

et al (2020) to adapt flexural band gaps in plate structures. Topological optimization

was performed with simulated annealing (SA) and using the finite element method.

Numerical examples demonstrated the effectiveness of the presented method of cre-

ating a band gap at frequencies below 500 Hz. The above studies show that, under

the action of mechanical loads, the destruction of structures occurs mainly due to

peak stresses in the adhesive layer.

This paper poses the problem of topological optimization of the shape of the

connected elements under the action of mechanical loads in order to obtain a de-

sign solution that is least susceptible to destruction. The solution was achieved by

increasing the rigidity of the elements to be joined, which ensures the smoothing of

stress peaks in the adhesive layer.

13.2 Statement of the Topological Optimization Problem

At present, the most widely used approaches to solving problems of topological

optimization of structures are methods of explicit parameterization, which work on

a fixed domain of finite elements; however, instead of a set of elastic properties

of the microstructure, each finite element contains only one design variable. This

variable is often understood as the density of the element material, ρe. To determine

the defining characteristics of the material, one of the most well-known methods was

chosen - the SIMP method. Power-law interpolation is used; in the case of setting

the problem on a region containing a void and one phase of the material, it has the

following form (Bendsøe and Sigmund, 2004)

Ee (ρe) = ρ
p
e ; 0 ≤ ρmin ≤ ρe ≤ 1, (13.1)

where ρ stands for amount of penalty. Design variable ρ is bounded from below by a

small positive constant ρmin, which is introduced in order to prevent the degeneracy

of the finite element matrix. Note that for the values ρmin ≤ ρ ≤ 1 and positive ρ,
modulus Ee (ρe) are limited to small value at density ρe = ρmin and the value of

Young modulus of the phase of the base material E0, for ρe = 1.

Here, the optimization problem relies on achieving a structure with maximum

rigidity by modifying the structure of the elements connected by the adhesive layer

while maintaining a given amount of modeling material. The redistribution of the

material should ensure a decrease in stresses both in the elements to be joined and

in the adhesive layer, which is the most susceptible to destruction.

Here, the algorithm minimizes strain energy Ws by increasing density in areas of

higher sensitivity
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min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

Ws0

∫

Ω

Ws (x)dΩ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (13.2)

where: Ω - area of the structure under consideration, Ws0 - normalizing factor. At

the same time, restrictions on the amount of material used for modeling must be met

in the area of solving the optimization problem

0 ≤
∫

Ω

ρi (x)dΩopt ≤ γiA, (13.3)

where: A - optimized area Ωopt, γ - material volumetric ratio. To eliminate the

checkerboard effect in the optimal structure, a penalty function is introduced in the

form
h0hmax

A

∫

Ω

|∇ρ (x)|2dΩ, (13.4)

where: h0 - initial grid size, which controls the size of the elements in the split,

hmax - the current size of the element at the given level. The penalty function is

dimensionless and has a value of the order of unity for the worst possible solution.

Dimensionless target function (13.2) and penalty function (13.4) must be consistent,

for example, in the form of a linear combination (13.2) and (13.4) with a given

parameter q, i.e. we have

f =
1−q
Ws0

∫

Ω

W (x)dΩ+q
∫

Ω

|∇ρ (x)|2dΩ. (13.5)

Below we will consider several examples for the problems of topological op-

timization of multilayer structures with an adhesive layer under the action of me-

chanical loads. The problems are solved by the finite element method, and linear

triangular elements are used. The optimization algorithm is based on the sliding

asymptote method.

13.3 Case Study 1

Consider a three-layer elastic structure, the dimensions and boundary conditions

for which are shown in Fig. 13.1. Area Ω1 filled with aluminium 2024-T3 with

Young modulus equal to E1 = 73.1 GPa, and Ω2 stands for the area for solving the

problem of topological optimization, in which it is necessary to find the optimal

microstructure of the distribution of a given amount of aluminium 2024-T3, while

Ω3 is the area of evenly distributed adhesive FM73-M solder with E2 = 2260 MPa.

Mechanical load acting on the right F = 100 kN
m2 , the left border is fixed. The material

data are taken from Mubashar et al (2011).
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Fig. 13.1 Design and boundary conditions.

When overlapping, there are tears at the ends of the adhesive line. These inho-

mogeneities lead to bending moments due to eccentric loading as well as uneven

distribution of moments around the adhesive layer. These moments create breaking

stresses in the adhesive layer. Geometric rupture also creates high shear stresses in

the adhesive. There are ways to reduce this eccentric load in lap joints. For example,

it has been shown to be effective for this to taper the edges of the layers to be joined.

A decrease in the maximum shear and peel stresses can be achieved by increasing

the length of the joint, the thickness of the solder, and the thickness of the layers

to be brazed. In this example, all geometrical and physical parameters of the solder

remain constant, and a decrease in the maximum stress values at the ends of the

solder is achieved due to the topological optimization of the microstructure of the

layers to be joined.

Figure 13.2 shows three-layer constructions commonly found in practical appli-

cations (Fig. 13.2 (A, B)) and the optimal design obtained as a result of solving

the problem of topological optimization (Fig. 13.2 (C)). The construction in Fig.

13.2 (B) features beveled corners of the elements to be joined, which is a classic

engineering technique for reducing shear stresses. Note that the amount of duralu-

min and silver solder material in structures (Fig. 13.2 (A, B, C)) is the same, while

solving the optimization problem, the coefficient γ should be taken equal to 0.5.

The Table 13.1 shows the numerical results: maximum values of von Mises

stresses in the solder layer, maximum values of shear stresses in the solder layer,

and total strain energy throughout the structure. For main stresses σ1,σ2,σ3 the

von Mises stress formula is defined as follows:

σvM =
1√
2

√
(σ1−σ2)2+ (σ2−σ3)2+ (σ1−σ3)2 (13.6)

It can be seen from the table that when using the classical design option to reduce

shear stresses (b), there is a slight improvement in this parameter. However, in terms

of von Mises stresses σvM and deformation energy Ws this design is slightly inferior

to the original one. For a topologically optimal design in solder, the maximum values
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Fig. 13.2 Three-layer con-
structions (A, B, C) with an
adhesive layer.

Table 13.1 Values of maximum stresses and strain energy.

Construction Maximum value of Maximum shear stress Ws (Nm) by

σvM (Pa) in the solder (Pa) in the solder construction

Straight (original construction) (a) 196620 97941 9118,3

Bevel (Classic design for reducing

shear stresses) (b) 217390 93368 9383,9

Topologically optimal design (c) 100356 56308 456,0

are as σvM and the maximum values of shear stresses decrease by more than 2 times.

The strain energy target for the entire structure has improved more than 20 times.

The graphs in Figs. 13.3, 13.4 show distribution σvM and shear stresses, respec-

tively, in the adhesive layer for the cases of structures A, B, C. Here and further

Fig. 13.3 Stresses σvM (Pa)
for structures A, B, C.
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Fig. 13.4 Shear stresses (Pa)
for structures A, B, C.

in the work, the graphs are given for the coordinate axes passing through the center

of the adhesive layer (as shown in Fig. 13.5). These plots confirm the previous con-

clusions, and also demonstrate the uniformity of stress distribution in the adhesive

layer for a topologically optimal design.

13.4 Case Study 2

Consider the construction shown in Fig. 13.6 having two uniform overlapping adhe-

sive joints. The physical properties of the materials are similar to the previous case.

Problems were solved for four different cases of load action:

• Symmetrical action of loads on the top and bottom of the structure F = 100 kN
m2 ;

• Symmetrical action of loads on the top and bottom of the structure F = 150 kN
m2 ;

Fig. 13.5 Location of coordi-
nate axes for graphs.
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Fig. 13.6 Construction and
boundary conditions.

• Load on the top of the structure F = 100 kN
m2 , to the bottom F = 150 kN

m2 ;

• Load on the top of the structure F = 100 kN
m2 , to the bottom F = 200 kN

m2 .

Table 13.2 shows the numerical results for each of these load cases. Figure 13.7

shows the optimal topology of structures under symmetric loading (cases 1, 2). The

optimal topologies of structures for different load intensities are almost identical,

however, with a stronger impact (case 2), the result has a finer structure, which can

be explained by the higher sensitivity of the objective function.

The graphs in Figs. 13.8 and 13.9 show the distribution σvM and shear stress for

load case 2 at the center of the upper adhesive layer. In the case of a symmetric

action of loads, the distribution graphs are symmetrical, but have different signs.

For example, in Fig. 13.10 the optimal topology of the structure with an asym-

metric action of loads, for the case of loading 3, is reported.

Table 13.2 Numerical results for different loading cases.

Load Construction Adhesive Maximum Maximum Integral Ws (Nm)

layer σvM (Pa) shear stress (Pa) von Mises stress (Pa) designs

in the solder in the solder over the solder area

First elementary - 134870 62601 17892 4019,7

case optimized - 98299 56604 17423 961,6

Second elementary - 202310 93902 26838 9044,3

case optimized - 147390 84884 26137 2164,4

elementary top 120030 53499 17931 8298,9

Third bottom 237550 109640 26837

case optimized top 98824 56968 17455 1552,6

bottom 147190 84827 26093

elementary top 132430 58057 18016 17117,0

Fourth bottom 340430 156390 35795

case optimized top 99920 56914 52145 4722,2

bottom 296110 17046 17553
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Fig. 13.7 Optimal topologies
for two load cases.

Fig. 13.8 Shear stress (Pa)
along the central axis of the
solder region for loading
case 2 (A - not optimal, B -
optimal).

Fig. 13.9 Von Mises stress
(Pa) along the central axis of
the solder region for loading
case 2 (A - not optimal, B -
optimal)

Fig. 13.10 Optimal topology
with asymmetric loads.
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In Figs. 13.11 and 13.12 shear stresses along the central axis of the region of the

solder for the case of loading 3 along the upper and lower layers of the adhesive are

shown.

For optimal structures, the stresses in all cases are distributed almost evenly,

in contrast to the original structures. The optimization process makes it possible

to reduce the stress drops for both symmetrical action of loads and for different

intensities of loads in different parts of the structure.

13.5 Concluding Remarks

In this paper, the topological optimization algorithm was used to optimize sandwich

structures with an adhesive layer under the action of mechanical loads in order to

reduce peak stresses. The results show that the obtained optimal structures signifi-

cantly reduce the peak shear and von Mises stresses in the solder layer in comparison

with other common engineering solutions for this class of problems.

As a result of solving the problem of topological optimization, a design solution

was obtained that is least susceptible to destruction due to an increase in the rigidity

of the elements being connected and, as a consequence, provides smoothing of stress

Fig. 13.11 Shear stress (Pa)
along the central axis of the
solder region for the case of
loading 3 (A - not optimal,
B - optimal) along the upper
layer.

Fig. 13.12 Shear stress (Pa)
along the central axis of the
solder region for loading
case 3 (A - not optimal, B
- optimal) along the bottom
layer.
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peaks in the adhesive layer. This was achieved by modifying the optimization area

with the same amount of material.
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