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Abstract: In this article, we will investigate a blood flow model with suspended 

magnetic particles. The fluid is influenced by an external magnetic field and an 

oscillating pressure gradient. Exact solutions for the velocity of fluid and velocity of 

magnetic particles will be obtained by means of integral transforms. Obtained results 

will be expressed in terms of post transient and transient parts. Moreover, to study the 

influence of the material parameters, numerical simulations and graphical illustrations 

will be used and useful consequences will be summarized. 

1. Introduction 

Basically, blood consists of multiple components, a mixture of various cells in plasma which 

behaves like an incompressible Newtonian fluid [1]. Moreover, plasma in a capillary flow behaves 

like Newtonian fluid [2]. It is more likely a bio-magnetic fluid, so its flow is effected by the magnetic 

field [3]. Furthermore, blood magnetic property is significantly influenced by the state of oxygenation 

[4]. The use of magnetic field for streamlining the flow of blood in the body could be utilized to 

control poor circulation of blood and the risk of heart attack to a person [3]. In [5] Haik et al.

developed a bio fluid dynamics model closely resembling to the ferro-hydrodynamics. Further 

Varshney et al. [6] numerically investigated the effect of magnetic field on the blood flow in artery 

having multiple stenosis, Bourhan and Magableh [7] studied the effects of magnetic field on heat 

transfer and fluid flow characteristics of blood flow in multi-stenosis arteries. In 2015, Sharma et al. 

[4] have numerically investigated the fluid flow parameters of blood together with magnetic particles 

in a cylindrical tube.

Our aim is to investigate the dynamics of proposed blood flow model with magnetic particles 

through a cylindrical tube under the influence of magnetic field and oscillatory pressure gradient in 

the axial direction [4]. However, we look for the exact solutions for the dimensionless form of the 

fluid velocity and magnetic particles velocity and express the obtained results in terms of steady state 

and transient parts. Furthermore, influence of the external magnetic field, particles concentration 

parameter and particles mass parameters on the dynamics of fluid and particles is investigated via 

numerical simulations and graphical illustrations. 
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2. Description of the problem 

 The artificial blood (75% water and 25% Glycerol) along with magnetic particles (iron oxide) is 

assumed to be flowing in a cylindrical glass tube under the influence of axial pressure gradient. The 

magnetic particles are supposed to be uniformly distributed throughout the blood. The blood is 

flowing in the axial direction and a uniform transverse magnetic field is applied.  We assume that: 

a. No-slip condition at the wall of tube is applied that the blood and magnetic particles have 

zero velocities at the wall of the tube. 

b. The magnetic Reynolds number is very small; hence the induced magnetic field effect is 

neglected [7].

2.1. Proposed geometry of the model 

Figure 1. Proposed geometry of the model 

Nomenclature 

JJ Current density

� Electrical conductivity 

EE Electric field intensity 

VV Velocity vector 

BB Magnetic flux intensity 

0� Magnetic permeability 

� Density of the fluid  

� Dynamic viscosity of the fluid 

� Kinematic viscosity of the fluid 

N Number of magnetic particles per unit volume 

S Stokes constant 
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Ha Hartmann number 

C Particles concentration 

M Particles mass parameter 

2.2. Mathematical model 

Based on the fact that, when a magnetic field is applied on an electrically conducting fluid, an 

electromagnetic force is generated due to the interaction of current with magnetic field. In our model,

iron oxide (magnetic particles) are suspended in blood (bio-magnetic fluid) which makes the blood 

more conducting and a strong electromagnetic force is experienced (due to the interaction of current 

with magnetic field). The strength of this electromotive force also depends on the speed of motion of 

the magnetic particles as well as magnetic flux intensity [8]. The governing equations of our problem 

involves both Navier-Stokes equations describing the fluid flow and Maxwell’s relations for magnetic 

field interactions. Now, from 

(Ohm’s law)                                         � �,J E V B�� 	 
� �J E V B�
                                                                

(1) 

(Maxwell’s equations)             0 , .
BJ E
t

� �
� 
� � �� �
� � �
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(Electromagnetic force included 

in the momentum equation)   � �
^
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where ( , )bu r t�  is the axial velocity of the blood. 

Consider blood is flowing in an axi-symmetric cylindrical tube of radius “a” with axis of the 

cylinder along z�  - axis, subject to the pressure gradient  
p
z
��
��

 and transverse magnetic field of 

strength B . The governing momentum equation for fluid flow in cylindrical polar coordinates is 

given by [4], [5]

2 2
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t z r rr
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(4) 

where ( , )pu r t� � �  is the velocity of the particles. For small Reynolds number of the relative velocity the 

force between blood and magnetic particle is proportional to the relative velocity. 

Moreover, motion of the magnetic particles is governed by  

( u ),b
av b p
um S u
t
�� � �� �
��

                                                                                                                 

(5)  

where avm  is the average mass of the magnetic particles. 

Like in [9], pressure gradient is considered as 
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0 1 cos( ),
p t
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(6) 

where 0� is the constant amplitude of the pressure gradient and 1�  is the amplitude of the pulsatile 

component giving rise to systolic and diastolic pressure. In experiments this kind of pressure gradient 

is maintained by peristaltic pump. 

The initial and boundary conditions on the velocity field are given by [4] 

( ,0) ( ,0) 0b pu r u r� � � �� � for (0, ),r a��
                                                                                     

(7) 
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By introducing the following dimensionless variables and parameters [4] in to Eqs. (4) – (9) 
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and dropping star notation, we have the following dimensionless initial-boundary problem 
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where Ha Ba �
�

� ,
2SNaC

�
�  and 

2

mM
a S
�

�
� . 

3. Solution of the problem 

  Applying Laplace transform to Eqs. (11), (12) and (15) and using initial conditions (13), we get 

2
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(1, ) 0, (1, ) 0.b pu q u q� �
                                                                                                            

(18) 

Using Eq. (17) into Eq. (16), we obtain 
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Eq. (19) can be written in an equivalent form 
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Applying finite Hankel transform [10] of order zero and using the boundary conditions, we get 
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Now, Eq. (21) can be rewritten as 
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Taking the inverse Laplace transform, we obtain 
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Taking the inverse Hankel transform [11], we obtain 
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or  as the sum of steady-state part ( , )stu r t  and transient part ( , )tu r t can be written 
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The particles velocity ( )pu r,t  can be obtained introducing Eq. (24) into (12) and using Eq. (18), we 

get 
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Moreover, in more elegant form we can write 
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the steady-state and transient components of the particles velocity.  
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4. Numerical results and discussion 

In this section our interest is to analyze the influence of the system parameters i.e. 

Hartmann number, particles concentration parameter and particles mass parameter on the 

velocity of the fluid as well as the flow velocity of the magnetic particles. In order to

evaluate numerical values of the velocities, we need the positive roots of the Bessel 

function 0J . These roots are generated by a numerical subroutine using MATHCAD 15.

The profiles of velocities versus r are plotted as shown in the Fig. 2 in order to discuss the 

influence of the Hartmann number on the flow of fluid and particles at different values of 

dimensionless times .t  Here we have considered {1,2,3,4,5}Ha�  and 0.5, 2M C� � .  As 

expected it is noticed that both fluid velocity ( , )bu r t  and particles velocity ( , )pu r t  decreases 

with the increasing values of Hartmann number. Because, Lorentz force (that appears when 

transverse magnetic field is applied to a moving electrically conducting fluid) resists the 

flow of fluid and magnetic particles. From the Fig. 2, it is reported that the effect of 

Hartmann number on ( , )bu r t  and ( , )pu r t  is quite significant about the axis of the cylinder 

and both the velocities decreases from maximum value to zero as 1r * . In comparison the 

fluid flows faster than the particles flow. Moreover, as the time progresses both the 

velocities increases. 

The diagrams of Fig. 3 are plotted in order to discuss the influence of the particle concentration 

parameter C on both the velocities ( , )bu r t  and ( , )pu r t . In this case we take {2,4,6,8,12}C� and we 

have used the other parameters 1, 3.M Ha� �  A similar trend is observed like the case of Ha .

Because, due to the increase of concentration, collision of the particles results in the displacement 

from their initial positions and leave the fluid stream lines. This deviation from their dynamic 

equilibrium state will induce relative velocity between the particles and the fluid, resulting in an 

additional energy dissipation and gives rise to an increase in effective viscosity.  Moreover, from the 

profiles it is also noticed that ( , ) ( , )p bu r t u r t�  and the influence of C on ( , )bu r t  is significant but 

less significant on ( , )pu r t  and diminishes with time. Here also influence of C  is significant near the 

axis of cylinder and both the velocities approaches to zero as 1r * . 

From the profiles of velocities versus r for different values of particles mass parameter M  and at 

different values of dimensionless times, as noticed from Fig. 4 that velocity of particle ( , )pu r t
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increases with the increasing values of parameterM , but the parameter M  has no significant 

influence on  the fluid velocity and this influence diminishes with time. Here, we take 

{0.6,0.7,0.8,0.9,1.2}M �  and 4, 3.C Ha� �   

Figure 2. Profiles of velocities for different values of Hartmann number and times. 
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Figure 3. Profiles of velocities for different values of particles concentration 

parameter and times. 
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Figure 4. Profiles of velocities for different values of particles mass parameter and 

times. 

In all the diagrams we have chosen the values of the parameters 0� , 1� and �  to be 1 , 0.8  and 
6

+

respectively. 
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5. Conclusions 

The purpose of this investigation was to study the dynamics of proposed blood model with suspended 

magnetic particles flowing through a cylindrical tube under the influence of magnetic field and 

oscillatory pressure gradient. The exact solutions for the dimensionless form of the fluid velocity and 

magnetic particles velocity are obtained and expressed in terms of steady state and transient parts. 

Furthermore, influence of the external magnetic field, particles concentration and mass parameters on 

the dynamics of fluid and particles is investigated via numerical simulations and graphical 

illustrations 

The noteworthy conclusions of the investigation are as under: 

, Strength of Hartmann number Ha , retarded the flow of fluid as well as particles.  

, The velocities of fluid as well as of particles are decreasing functions of particles 

concentration parameter. 

, Influence of concentration parameter is significant on fluid velocity as compare to particles 

velocity.  

, The particles mass parameter influence inversely on particles velocity, while its effect on 

the fluid velocity is insignificant. 
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