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Abstract: Nonlinear vibrations of the microplates subjected to the influence of a 

longitudinal magnetic field are considered. Size-depended model based on a modified 

couple stress theory is employed. The governing equations for geometrically nonlinear 

vibrations use the von Karman plate theory.  Effect of the magnetic field is taken into 

account due to the Lorentz force deriving from the Maxwell's equations. Developed 

approach is based on applying of the Bubnov-Galerkin method and reducing partial 

differential equations to an ordinary differential equation.  Some calculations are 

performed to validate the proposed algorithm in comparison with the known from 

literature results. Influence of the magnetic field, material length scale-parameter, plate 

aspect ratio on the system behavior is studied.

It is clear that problems of micro and nano sized elements have been increasingly studied because of 

the widespread use of microplates, microbeams, microshells in high-tech industries. It is often the 

microelements are subjected to various loads which can significantly effects on its behavior. 

Investigation of plate under magnetic field in-plane influence is of great importance due to using as 

elements of NEMS, MEMS, resonators, sensors etc. The experimental and theoretical investigations

allow to conclude that a size-dependent effect appears when thickness is in a micro or nano scale [1]

and for accurate analysis classical elasticity theory can be not enough. Various theories have been 

applied to study of micro and nano structures, theory of micropolar elasticity by Cosserat and Cosserat

[2], couple stress theory by Mindlin and Tiersten [3], Toupin [4] , Koiter [5], the nonlocal elasticity 

theory by Eringen [6], strain gradient theory  by Lam et al. [1] . In this paper we use modified couple 

stress theory (MCST) proposed by Yang et al [7], which contains only one additional material length

scale parameter and a symmetric couple stress tensor.

Recently, MCST was used in linear vibrations, buckling and bending plate analysis [8-13], nonlinear

vibrations of micro-plates [14,15], FG Mindlin microplates [16], viscoelastic plates [17], chaotic

vibrations of nano-shells [18]. Influence of magnetic field on micro and nano plates is studied in [19-

22] using nonlocal elasticity theory. Analysis of published results has shown that geometrically 

nonlinear vibrations of small-sized plates subjected to magnetic influence in framework MCST has not 

been investigated yet.

In the paper we present an analytical method for small-sized geometrically nonlinear vibrations of 

plates. The investigation is based on the modified couple stress theory, the von Karman plate theory,
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Kirchhoff-Love hypotheses and Maxwell’s relations. The governing PDEs is reduced to ODE by 

applying of the Bubnov-Galerkin method. The present results contain study of the magnetic field effect 

and material length scale parameter influence on the frequencies and backbone curves. 

1.1. Formulation 

Geometrically nonlinear vibrations of isotropic plate (see Fig.1) in magnetic field are considered. 

According to the modified couple strain theory [7] the strain energy unlike the classical elasticity theory 

depends on stress tensor and curvature tensor and it is presented as

(1)

where are components of stress tensor, strain tensor, diviatory part of the couple stress 

tensor, symmetric curvature tensor, that are defined as

                                                     (2)

where are Lame constants

.

is Kronecker delta, is a material length scale parameter, is Poisson’s ratio, E is Young’s modulus, 

are displacements, are components of rotation vector, which have form

                                                                                                                             (4)

here is permutation symbol.

The nonlinear dynamics of the plate is derived by the equations based on the von Karman theory. Mixed 

form of the governing equations in propagation of elastic waves in longitudinal equations are neglected

is presented [18]

,                                                                                       (5)

,                                                                                                                    (6)

,

In (5), (6) is , h is thickness of the plate, q

System of equations (see Eq. 5, 6) is supplemented with the boundary conditions:

simply supported movable edges:
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, ,                                                                   (7)

, .                                                                   (8)

simply supported immovable edges:

, , ,                                                                   (9)

, ,                                                                      (10)

Figure 1. Microplate subjected to in-plane magnetic field

1.2. Influence of magnetic field 

Changing the vibrational characteristics of the small-sized plates by an appropriate external influence

can be effectively used in the structure design, vibration control etc. One of the significant effects is the 

use of a magnetic field. We consider the plate exposed to the uniaxial magnetic field [19,21,22], defined 

by the vector of magnetic field strength

.                                                                                                                                                                       (11)

From Maxwell’s relations distributing vector of the magnetic field has the form

],                                                                                                                             (12)

where vector is vector of displacements. After substitution (see Eq. 11) into (see Eq. 

12) it can be obtained

.                                                                                                             (13)

Thus, current density is written as

=( , .(14)

The Lorentz force is defined as

.                                                                                                          (15)

In (see Eq. 15) is the magnetic permeability.

It should be noted that the transverse vibrations are considered and only is taken into account [22].

Formula (see Eq. 15) gives

.                                                                                                        (16)
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For Kirchhoff-Love plate transverse component takes form

.                                                                                                              (17)   

where is mid-plane displacements of the plate along z directions. As a result, force produced by 

magnetic field can be presented as

.                                                                                         (18)

1.3. Linear vibrations of microplate in magnetic field

In the case of linear vibrations, system (see Eq. 5,6) is reduced and we have following equation

.                                                                                                  (19)

Solution of such equation is taken as , where is shape 

function, that allows to obtain linear frequency of plate vibrations under in-plane magnetic field

                                                                   (20)

For first mode (1,1) this formula is reduced to

.                                                                                    (21)

1.4. Nonlinear vibrations of microplate in magnetic field

Now let us consider system of equations (see Eq. 5,6). The deflection is presented as 

.                                                                                                 (22)

Substitution (see Eq. 22) into the equation in (see Eq. 6) leads to 

.                                                                              (23)

The solution of the last equation (see Eq. 23) [23] is

.                                                                    (24)

Coefficients and can be found from boundary conditions, for case (see Eq. 9, 10)

for case (see Eq. 7, 8)

                                                                              (25)
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Next step is substitution expressions (see Eq. 22,24) into the first equation (see Eq. 5) of governing 

system and applying the Bubnov-Galerkin approach that leads to the following Duffing type equation

,                                                                                                                 (26)

where

, ,                                         (27)

Equation (see Eq. 26) can be solved by the Bubnov-Galerkin approach, presenting the solution as

, where , are amplitude and frequency of nonlinear vibrations. Thus, it can be 

obtained frequency ratio

, .                                                                                                                    (28)

2. Validation

To verify presented method the results are compared with available ones, we considered size-dependent 

vibrations of rectangular simply supported plate without magnetic action. Dimensionless natural 

frequencies are presented in Table 1,2 for various values of  . The material properties 

for considered nanoplate are taken as

Table 1
Dimensionless natural frequencies for isotropic simply supported square plate (b/a=1)

depending on thickness ratio 

1/6 1/5 1/4 1/3 1/2 1

[17] 6.471 6.602 6.839 7.323 8.558 13.383

Present 6.471 6.603 6.839 7.323 8.558 13.383

Table 2
Dimensionless natural frequencies for isotropic simply supported rectangular plate (b/a=0.5)

depending on thickness ratio 

0.1 0.5 1

[17] 15.68 21.39 33.45

Present 15.685 21.396 33.459

In Table 3 nonlinear frequency ratios for plate found by proposed method with (classical 

theory) are presented. Material parameters are Boundary 
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conditions are supposed of type (see Eq. 9, 10). The results compared with ones obtained by another 

approaches [24-27].

Table 3

Nonlinear frequency ratio for isotropic simply supported plate ( )

[25] [26] [27] [24] Present

0.2 1.0195 1.0197 1.0195

0.4

0.6

0.8

1

Comparison of results allows to conclude about good agreement with the known ones in the literature.

3. Numerical results

To investigate the influence of magnetic field on vibration process dimensionless linear 

frequencies for various values of magnetic parameter MP (here dimensionless magnetic 

parameter is introduced as ) and thickness ratio l/h are calculated. It is assumed 

that plate has the following characteristics

a) b)

Figure 2. Dimensionless frequency for various values of material scale parameter, magnetic 

parameter, a) b/a=1.5, b) b/a=2.
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Analyzing it can be seen that increasing of magnetic parameter leads to increasing of dimensionless 

frequency as well as it is observed the similar influence of length scale parameter on frequency in both 

cases of the plate aspect ratio. Also we can conclude that the aspect ratio has a small effect (especially 

when l/h is close to 1) on the frequency parameter at large values of the magnetic parameter.

Dimensionless frequency parameters in terms of magnetic parameter and thickness ratio are

calculated and presented on Figure 3. It can be found that frequency parameter generally increasing 

with increasing of magnetic parameter and material scale length parameter. Changing of magnetic 

parameter has smaller effect on vibration frequency when material length scale parameter is close to 

thickness of the plate. The minimum of dimensionless frequency achieves when MP and l vanish.

Figure 3. Dimensionless frequency parameter in terms of MP and l/h

The effect of geometric nonlinearity is demonstrated on Figure 4, 5. The backbone curves (see Eq. 28) 

for rectangular plate specified by the aspect ratio b/a=1.5, thickness ratio l/h=0 and various MP are 

provided on Figure 4. According to obtained results frequency ratio decreases with increasing of 

magnetic parametric value MP. Further we fixed MP=0 to investigate the influence of material length 

scale parameter l on backbone curves, these results are presented on Figure 5. The size effect is more 

meaningful when l/h>2.5 and the difference in results obtained by classical theory and modified couple 

stress theory is insignificant when the thickness ratio l/h is small. Action of magnetic field as well as 

scale parameter is more significant in the case of immovable edges (see Eq. 9,10), in case of movable 

edges (see Eq.7,8) the backbone curves are closer each other (see Fig. 4, 5).
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a) b)

Figure 4. Frequency ratio (see Eq. 28) for two types of boundary conditions: a)-conditions (see 

Eq. 7,8), b) – conditions (see Eq. 9,10), l/h=0

a) b)

Figure 5. Frequency ratio (see Eq. 28) for two types of boundary conditions: a)-conditions (see 

Eq. 7,8), b) – conditions (see Eq. 9,10), MP=0

4. Conclusions.

The size-dependent nonlinear vibrations of microplates in magnetic field are studied. Governing PD 

equations are based on the modified couple stress theory, the Kirchhoff hypothesis, the von Karman 

theory. The influence of the material length scale parameter, the magnetic parameter, boundary

conditions, aspect ratio on the linear frequency, nonlinear ratio is investigated. It has been shown that 

the linear frequency increases with increasing of length scale parameter and magnetic parameter unlike 
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the ratio of nonlinear frequency to linear frequency, which decreases. Also, the small-size effect and 

magnetic action are more significant for immovable simply supported plates.
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