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Abstract To simulate the static and dynamic behavior of nanoplates, higher-order 

continuum theories have been developed: modified couple stress theory of elasticity, 

nonlocal theory of elasticity, gradient theory of elasticity, and surface elasticity theory.

It should be noted that when using these theories, the equations describing the behavior 

of the plates have a high order, and the desired functions depend on two or more 

variables. In this regard, there is a need to create methods that can reduce the dimension 

of the desired functions, i.e. reduce the solution of the partial differential equation to 

the solution of an ordinary differential equation. The paper provides an overview of 

methods for reducing partial differential equations to ordinary differential equations 

based on the Kantorovich-Vlasov method. One such method is the variational iteration 

method. MVI was widely used by many researchers in solving problems of the theory 

of shells and plates. The authors of this work, since the 70s of the last century, has been 

used this method to solve geometrically, physically nonlinear and contact problems of 

the theory of plates and shells for full-size systems. In a number of their works, the 

authors provided a justification of this method for a class of equations described by 

positive definite operators. In the presented paper, MVI is used in plate nanomechanics 

problems and a proof of MVI convergence for the problems under consideration is 

given. A numerical example is also added. 

1. Introduction 

A number of computational methods aimed to solve the most diverse problems of mathematical 

physics and technology are based on the ideas of Russian scientists I.G. Bubnov and B.G. Galerkin. To 

date, the Bubnov-Galerkin methods have been applied in solving numerous problems of structural 

mechanics, structural dynamics, hydromechanics, hydromechanical stability theory, magneto 

hydrodynamics, heat and mass transfer theory, acoustics, microwave propagation theory, neuron 

transfer theory, etc. Using the Bubnov - Galerkin approach, ordinary differential equations, partial 

differential equations, and integral equations were studied. The application of the Bubnov-Galerkin 

method is connected, among other things, with the search for stationary points of some functional, 

which is a certain integral of the differential expressions generated by the original problem, which 

makes it possible to decrease the order of differential operators in the integrand. 
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The origin of the Bubnov-Galerkin method is usually associated with the name of the outstanding 

Russian scientist Ivan G. Bubnov (1872 - 1919). Together with A.N. Krylov, he was the creator of the 

Russian Navy. S.P. Timoshenko in a paper published in 1907 [1] using the example of a central 

compressed rod considered the stability problem based on minimizing the potential energy of the rod. 

This work was sent for feedback to professors N.A. Belelyubsky, S.I. Beletsky, I.G. Bubnov, V.L. 

Kirpichev and G.V. Kolosov, which were published in 1913 in the "Collection of the Institute of 

Railway Engineers" [2]. This date is considered the date of the official birth of the Bubnov method, as 

a general method for solving differential equations. I.G. Bubnov gave two options for solving the 

problem of reducing partial differential equations (or their systems), i.e. either to algebraic equations 

(or their systems), or to an ordinary differential equation (or their systems).

In Western literature, this method is associated with the B.G. Galerkin’s article [3] published in 

1915. The article was devoted to the elastic equilibrium of rods and thin plates. But the above analysis 

of publications devoted to this method suggests that I.G. Bubnov as a true genius proposed an idea that 

occurred to him when he was working on a review of  S.P. Timoshenko paper. In this review, he already 

established the identity between the energy method (called the Rayleigh – Ritz – Timoshenko method) 

and his approach (called the Bubnov – Galerkin method). I.G. Bubnov subsequently used this approach 

extremely little. This method is well known in the scientific literature due to the works of B.G. Galerkin 

and his colleagues. 

Applying the Bubnov – Galerkin methodology in one of the variables, if the desired function 

depends on two variables, we arrive at the solution of the ordinary differential equation in the other 

variable, accordingly, to the Kantorovich – Vlasov method [4, 5]. Such a procedure linked these two 

distinguished names, and the method 

they developed became known as the 

Kantorovich-Vlasov method 

(MKV). This method, by its 

ideology, couples the Fourier method 

(MF) based on the separation of 

variables, and the Bubnov-Galerkin 

method (MBG), which gave impetus 

to a number of modifications (Fig. 1). 

Modifications are based on the 

Weindiner method (MV), the 

variational iteration method (MVI), 

the Agranovsky – Baglai – Smirnov 

method (MABS), and their 

Fig. 1. Interrelation of Bubnov-Galerkin method, 

Fourier method, the method of Kantorovich-Vlasov 

and their modifications
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combinations are described in a number of papers by the authors of this work [6–8]. These articles 

provide evidence of convergence and a comparative analysis of the results of these methods. 

One of the methods included in the scheme is the variational iterations method (MVI), which saves 

the researcher from the need to build a system of approximating functions in the procedure while 

employing the Bubnov-Galerkin method. The functions initially specified in an arbitrary way 

(obviously satisfying certain well-known smoothness conditions) are refined in the process of 

calculations by MVI based on the solutions of the original system of differential equations. 

This method was first proposed and applied in 1933 by T.E. Shunk [9] for calculating the bending 

of cylindrical panels. However, the work went unnoticed, and the method was rediscovered again in 

1964 by E.E. Zhukov [10], who applied it in calculating thin rectangular plates. Later MVI was widely 

used by many researchers in solving problems of the theory of shells and plates (a bibliography on this 

subject is presented in [11]). The justification of this method for the class of equations described by 

positive definite operators is given in reference [12]. 

It should be noted the discrepancy in the names. In the Western scientific literature, the variational 

iterations method is called the extended Kantorovich method thanks to the work of A.D. Kerr [13-15] 

published 38 years after T.E. Shunk and 5 years after E.E. Zhukov. Thus, the method was reopened. 

The variational iterations method (extended Kantorovich method) over the past half century has 

been used to solve problems of statics, stability, determination of natural frequencies and dynamics. A 

fairly complete review of Western publications in this area can be found in [16, 17]. In the USSR and 

Russia, this method was mainly used in the works of V.A.Krysko and his students. For the first time, 

this scientific group used the approach in 1968 to study the bending of flexible orthotropic plates [18], 

and it got its name from the variational iterations method in 1970 [19], devoted to the numerical study 

of flexible plates and comparison with experimental data. Later, scientists of this group used the 

variational iterations method to solve geometrically and physically nonlinear problems in the theory of 

shells and plates [20,21], in problems of designing optimal plates [22–24], and on other topics [25–27]. 

In this paper, the variational iterations method is extended to the study of the static bending of 

Kirchhoff-Love nano-shells taking into account Kármán geometric nonlinearity and based on a 

modified couple stress theory. 

2. Mathematical background 

Let us consider a shallow rectangular shell with dimensions , ,a b h  along axes 1 2 3, ,x x x , respectively. 

For a spherical shell, the internal radius, expressed in the shell thickness, can be easily determined with 

a formula 
1 8f k� , where 1k  stands for the shell curvature parameter [28].
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The origin of the coordinate system is located in the upper left corner of the shell on its middle 

surface. The axes 1 2,x x  are parallel to the shell sides and the axis 3x  is directed towards the shell 

curvature (Fig. 2). In the given coordinate system, the shell is treated as a 3D region �  defined by 

� � � � � � � �� 	1 2 3 1 2 3,x ,x  /  ,x ,x 0, 0,  2, 2x x a b h h�� 
 � � � � . The shell middle surface 3 0x �  is defined 

as � � � � � �� 	1 2 1 2, / ,x 0, 0,x x x a b
 � 
 � .

  

Fig.1. Scheme of the studied shell.

We denote shell displacements along the axes 
1 2 3, ,x x x  by 1 2 3, ,u u u , respectively, where 

3 3 1 2)( , )u u x x� . All components of the displacement are assumed to be essentially smaller than the 

characteristic shell dimension; deformations in the shell middle surface 11 22 12, ,� � �  are assumed to be 

negligible with respect to a unit (however, it does not mean that the relationship between displacements 

and deformations must be linear). Owing to the Kirchhoff-Love hypothesis, the following relations 

between the deformations of the middle surface ij�  and an arbitrary surface ije  are valid [29]

3ii ii iie x� �� � , 1,2i � , 12 12 3 12e x� �� � , (1)
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and 1 2,k k  denote the shell curvatures.

In the modified coupled stress theory [30], the deformation energy 
1U  of an elastic body 

occupying the space � , taking into account small deformation, reads 

� �1

1

2
ij ij ij ijU m dv� � �

�

� �� , (3)
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where: ij� �  deformation tensor components, ij� �  components of an asymmetric tensor of the 

curvature gradient. The components are defined as follows 

� �, , , ,

1
,

2
ij i j j i m i m ju u u u� � � � � � � �� �, ,

1 1
,

2 2
ij i j j i i i

rot u� � � �� � � . (4)

Here iu  stands for the components of the displacement vectors u, θ stands for an infinitely small 

rotation vector with elements i� and ij�  is the Kronecker symbol. In the case of an isotropic elastic 

material, stresses generated by kinematic parameters occurred in (4) are yielded by the following state 

equations [30]:  

22 , 2ij mm ij ij ij ijm l� �� � �� � �� � � , (5)

where , ,ij ij ijm� � и ij�  denote components of the classical tensor of stresses σ , deformation tensor ,ε

deviator part of the symmetric tensor of the higher order m and a symmetric part of the curvature tensor 

χ , respectively; ,
(1 )(1 2 ) 2(1 )

E E�� �
� � �

� �
� � �

  are the Lamè parameters;

� � � �, , , , , , ,i iE x y z e x y z e� is Young’s modulus and Poisson’s coefficient, respectively, � �, , , ix y z e  - 

density of the beam material; ie  - the strength of the deformation.

In this model, in addition to the classical Lamè parameters, the additional scale parameter of the 

length l is employed [30]. This is a simple consequence of the fact that in the couple stress theory, the 

density of the deformation energy depends only on the deformation tensor and the symmetric curvature 

tensor. The latter does not explicitly depend on the rotation (nonsymmetric part of the deformation 

gradient) and the non-symmetric part of the curvature tensor [30].

To obtain the initial differential equations in mixed form we introduce the force function F: 

2

ij
i j

FT
x x
�

� �
� �

, (6)

and then the equations in mixed form will be written with respect to 3u  and the force function F. 

We introduce the well-known notation for differential operators 

2 2
2

2 12 2

1 2
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(.) ;k k k

x x
� �

! � �
� �
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. (7)

Using the Hamilton principle, we come to a system of differential equations composed of the 

equations of motion of the nano-shell (8) and the equations of compatibility of deformations (9): 

4 2

3 3( , ) 0kD u L u F F q! � �! � �3

4D u4

3D u LD u4

3 ( ,                                                 (8)

4 2

3 3 3

1 1
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2
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where
2

4(1 )

ElD D
�

� �
�4(

D D� �D  (D – cylindrical stiffness, l  - size-dependent length parameter of the 

material).

Scheme of MVI can be formally described in the following way. We are aimed at finding a solution 

to equation ( , ) ( , );Aw x y q x y� , ( , )x y x y
� , where А stands for a certain operator defined on the 

manifold ( )D A  of the Hilbert space 
2( )L � ; ( , )q x y  stands for a given function of two variables x, y,

and ( , )w x y  is a searched function; ( , )x y�  is a space associated with variations of x and y.

If ( , )x y X Y� � �  (X – a certain bounded set of variables x; Y - a bounded set of y ), then a 

solution to equation  has the following form 
1

( , ) ( ) ( )
N

N i i
i

w x y u x v y
�

� " , where the functions ( )iu x and

( )iv y are defined by the following system of equations

� � � � � � � �

� � � � � � � �

1 10, 0,

...............................................................................

0, 0,

N N
X Y

N N N N
X Y

Aw q u x dx Aw q v y dy

Aw q u x dx Aw q v y dy

� � � �

� � � �

� �

� �

in the following way. A certain system composed of N  functions with respect to one of the variables, 

for instance, 0 0 0

1 2( ), ( ),..., ( )Nu x u x u x is given. Then, the first N  equations of the system yield N

functions 1 1 1

1 2( ), ( ),..., ( )Nv x v x v x . Next, the obtained functions are employed to create a new set of 

functions 2 2 2

1 2( ), ( ),..., ( )Nx u x u x u x� , which is further used to construct a set of new functions with 

respect to the variable y, i.e. 3 3 3

1 2( ), ( ),..., ( )Nv x v x v x , and so on. In the case of the iterational procedure 

MVI [12], proves of the theorems constituting the theoretical background of the MVI convergence were 

given for the problems of the theory of plates. 

Theorem 1. If A is a positively defined operator with its action space ( ) ,AD A H#  then the 

sequence of elements  
1 0( , )

T

k
k H

w x y w$ � � is monotonously decreasing, i.e. for arbitrary i and j if 

only ,i j%  then 1 0 1 0 .
T T

i j
H H

w w w w� & �

Theorem 2. Let each element of the basis system of the space � �
0

2

mW X Y�  has the form

( , ) ( ) ( ),i i ix y x y� ' (� where � �� 	i x)  is a basis system in the space � �
0

2

mW X , аnd respectively � �
0

2

mW X

in the space 
0

2 ( ),mW Y  and in order to get an arbitrary N -th approximation regarding MVI, the 
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components of the elements of the basis system � �� 	,i x y�  are taken as initial conditions. Then, for 

sufficiently large N, the MVI gives a unique approximate solution Nw , and the sequence � 	Nw  is 

convergent with regard to the norm of the space � �
0

2

mW X Y�  and tends to the exact solution 0w

independently of a number of steps k, which can be defined for each of the N -th approximation, i.e. 

0

2
0 0,m

k
N W

w w N� * *+ . 

The resulting system of nonlinear partial differential equations can be solved by one of the methods 

shown in Fig. 1. Boundary and initial conditions are given in [31]. 

For a numerical example, the variational iteration method and the combination of the variational 

iteration method and the Agranovsky – Baglay – Smirnov method [MABS] were used. The 

Agranovsky-Baglay-Smirnov method is proposed and substantiated in the works of Agranovsky et al. 

[32]. Let's consider the scheme of application of the Agranovsky-Baglai-Smirnov method on the 

example of the operator equation: 

� � � �1 2 1 2, ,A w x x q x x, - �. / . (10)

A solution to equation (10) in the first approximation ( ( 1) ( )

1 1 1( ) ( )k kw x y' (�� ) is searched in a way 

similar to the MVI.

The new equation is defined as follows 

2 1( , ) ( , ) ( , )Aw x y q x y Aw x y� � ,                                                  (11) 

i.e. we have changed the right hand side of equation (10). Equation (11) is solved again with the help 

of MVI, and its first approximation yields 

( 1) ( )

2 2 2( , ) ( ) ( )k kw x y x y) (�� .                                                              (12) 

The next new equation follows

3 1 2( , ) ( , ) ( , ) ( , )Aw x y q x y Aw x y Aw x y� � � .                                       (13) 

and then one employs the MVI again in the first approximation, and so on. 

Finally, the following series is used as the input solution:

1

( , ) ( , )
N

n
n

w x y w x y
�

� " .                                                                   (14) 
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3. Results and discussions. 

As a numerical example, we consider the application of the described approaches to solve the 

problem of bending the nanoplate ( 1 2 0k k� � ) and without taking into account the geometric 

nonlinearity, then equations (8, 9) in dimensionless form will be written as 

� � � �1 2 1 2, ,D w x x q x x00 �� 1D w x� 100 �w x xD w� 1
, (15)

where 21 (1 ) 1

12 (1 )(1 2 ) 4(1 )
D � 1

� � �
�

� �
� � �

1

12 (1
D � ,

l
h

1 � - the dimensionless form of the dimension-dependent 

coefficient , � is the Poisson's ratio. We consider the boundary conditions of two kinds:

� � � �1 2 1 2, 0, , 0
Г Г

w x x w x x� 0 � , (16)

� � � �1 2 1 2, 0, , 0
Г Г

w x x w x x n� � � � . (17)

The load is constant and distributed over the entire surface of the plate and is equal to 50. Ordinary 

differential equations obtained after the use of MSI and MSI + ABS are reduced by the finite difference 

method of 2 order of accuracy to a system of algebraic equations which is solved by the Gauss method.  

Numerical results for the variational iteration (MVI) and combination (MVI+ABS) method are 

given in Table 1. The exact solution obtained in double trigonometric series is also reported in [8]: 

Table 1.

Boundary 

condition

Exact 

solution
γ

MVI MVI+MABS

N=4 N=10 N=20 N=4 N=10 N=20

(16)
0.2028

γ=0

0.2031 0.2031 0.2030 0.2029 0.2029 0.2028

-//- -//- 0.1% -//- -//- 0%
Relates error

(17)
0.0661 0.0650 0.0651 0.0653 0.0660 0.0660 0.0661

Relates error 1.66% 1.51% 1.21% -//- -//- 0%

(16)

γ=0.5

0.1074 0.1074 0.1073 0.1066 0.1066 0.1065

(17) 0.0374 0.0375 0.0376 0.0382 0.0382 0.0383

Here N is the number of partitions of the plate NxN. As can be seen from the table, the use of 

MABS significantly increases the accuracy of the solution and for the value γ=0, the numerical solution 

is equal to the exact one. Taking into account the size-dependent behavior leads to the fact that the 

deflection decreases almost twice, i.e. the plate becomes more rigid.
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4. Concluding remarks 

The paper deals with the application of the variational iteration method (extended Kantorovich 

method) to the solution of the problems of the Kirchhoff – Love nano-shells bending on the basis of the 

modified couple stress theory. Modifications of known methods and their relationship are given. The 

paper presents a scheme for proving the convergence of the variational iteration method. The numerical 

implementation of the variational iteration method and the Agranovsky-Baglay-Smirnov method is 

shown by the example of solving the Sophie-Germain-Lagrange equation. Numerical results prove fast 

convergence of the methods even with a small number of grid partitions. 
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