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Abstract: The mechanical system with the nonlinear springs connected in series is

considered in the paper. The mathematical model of that kind of systems consists of the 

differential and algebraic equations (DAEs). Adequately modified multiple scales 

method (MSM) in time domain have been applied to solve effectively the problem of 

harmonically forced vibration governed by DAEs. The obtained approximate solution 

in the analytical form allows for qualitative study of the considered system, among 

others for identification of the resonance conditions. The case of the main resonance is 

analysed in details. The modulation equations of the amplitudes and phases which are 

the integral part of the MSM solution allow one to study both steady and unsteady 

resonant motion. The stability of the resonant curves concerning the steady states has 

been tested and verified by comparison with the numerically obtained solutions.

1. Introduction

The massless springs in various configurations serve as a widely used models of the elastic effects in 

many structures. They occur not only in pure mechanical systems but also in mechatronical devices and

in micro-electro-mechanical systems as well. The springs arranged in various configurations can be a

source of manifold and sometimes unexpected dynamical phenomena, especially near resonances.

Our research deals with the one dimensional lumped system containing two springs with nonlinear 

properties and connected in series. The system seems to be quite simple, however its governing 

equations contain both differential and algebraic equation, therefore the appropriate modification of the 

asymptotic approach is necessary. We are focused on the forced vibration both far from resonance as 

well as in the resonance conditions. The alike system but containing one nonlinear and one linear spring 

was analyzed by Telli and Kopmaz [1]. The one dimensional oscillator with two nonlinear springs 

connected in series was analyzed in the paper [2], where the solutions dealing with only the non-

resonant case are analyzed.

2. Mechanical system and mathematical model

Let us consider a body of mass m attached to the immovable wall by two springs connected in series,

which can move in the horizontal path. The physical model of the analyzed system is given in Fig.1.
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Figure 1.  The analyzed mechanical system.

Let and are the elongation of the springs, whose nominal length are and , therefore the 

absolute displacement of the body equals . We assume the nonlinear character of the restoring 

forces in the springs in the following form

for , (1)

where is the stiffness coefficient and stands for the nonlinearity parameter for the i-th spring.

The kinetic energy of the system is 

, (2)

while the potential energy

. (3)

The forces connected with the external excitation and the damping effects are introduced into 

model as generalized force

. (4)

Since the springs are connected serially, the equilibrium equation for the weightless connecting 

point S is as follows

. (5)

The equation of motion, derived using the Lagrang’e formalism, and the equation (5) are 

transferred to the convenient dimensionless form, so the governing equations supplemented with the 

initial conditions take the following form

, (6)

, (7)

, (8)
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where

, , , , , , .

The overdot denotes the differentiation with respect to the dimensionless time , where 

and is the effective stiffness of two linear springs connected in series which plays 

the role of a characteristic coefficient.

Differentiating twice the algebraic equation (7) the following relation between the second 

derivatives of the unknown functions is obtained

, (9)

which allows to eliminate, for example, the function from the equation (6).

3. Analytical solution to the problem

The differential-algebraic problem (6) – (8) is solved in the asymptotic way using the Multiple Scale 

Method (MSM). Since we assume the smallness of some parameters, so we formally introduce the 

parameters with the tilde over the symbol:

, , , , (10)

where is a so called small parameter.

Each of the solutions are assumed in the form of the sum containing the new unknown functions 

dependent on two time scales, i.e. we have

, (11)

, (12)

where is the fast time scale, and is the slow time scale. The differential operators take 

the form

, . (13)

Substituting expressions (10) – (13) into equations (6) – (7) yields the algebraic-differential system 

in which the small parameter appears in various powers. This leads to the first and the second order 

approximation equations:

- approximation of the order 

, (14)
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, (15)

- approximation of the order 

, (16)

. (17)

The above set of the differential-algebraic equations is solved in the recursive way, i.e. the 

solutions to the lower order approximation equations are substituted into the higher order ones.

The solution to the equations (14) – (15) are

, (18)

, (19)

where and its complex conjugate are the unknown complex functions.

4. Vibration far from resonance

After substituting the solutions (18) – (19) into the equations (16) – (17), the secular terms should be 

eliminated, which leads to the following solvability conditions

, (20)

. (21)

Substituting solutions (18) and (19) into (16) – (17) and taking into consideration the conditions 

(20) – (21), the following solution to the second order approximation equations is found

(22)

(23)

where CC stands for the complex conjugates.

There is convenient to express the complex functions and in the exponential form

, (24)

where and are unknown real valued functions and stand for the amplitude and the phase 

of the oscillations, respectively.
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Introducing relationships (24) into the solvability conditions (20) – (21), returning to the original 

notations according to (10) and using the definition of operator (13)1 allow us to write the modulation 

equations in the following form

, (25)

. (26)

Assuming the initial conditions in the form

, (27)

we obtain the solution to the problem (25) – (27) as follows

. (28)

The amplitude and phase determined by (28) are then introduced into the solutions (18) – (19),

(22) – (23) of the first and second order approximation. Then the relationships (24) are taken into 

account. Afterwards, using expressions (11) – (12) and returning to  the original denotations according 

to (10), we obtain the approximate solution to the original problem (6) – (8). The absolute 

dimensionless displacement of the body obtained in this way follows

, (29)

where and are the solutions (28) to the modulation problem (25) – (27).

The comparison of the time course of the body displacement determined by the solution (29) with 

the analogic one obtained numerically is presented in Fig.2 and Fig.3 for the transient and the steady 

state vibration, respectively.

Figure 2.  Body displacement in time for the transient non-resonant vibration.
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Figure 3.  Body displacement in time for the steady-state non-resonant vibration.

The results presented are obtained for the following data: 

. The compatibility of the two approaches, i.e. MSM and 

numerical solution, is very high which confirms the correctness of the derived analytical solutions. The 

relationship between initial conditions (8) and (27) has been determined using the analytical form of 

the solution (29).

5. Vibration at resonance

Let us analyze the case of the main resonance when . In order to investigate the behaviour 

of the system near resonance, the detuning parameter is introduced as follows

. (30)

The assumption (30) is inserted into equation (6) and then the procedure similar to that of the 

previous section is carried out. In result, the modulation equations are obtained of the following form

, (31)

. (32)

Observe that equations (31) – (32), supplemented by initial conditions (27), cannot be solved 

analytically. The numerical treatment is required in this case. The absolute dimensionless body 

displacement obtained in the way similar to the one described in the previous section is as follows

, (33)

where and denote the solutions to the modulation equations (31) – (32).
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Time history of the body displacement in the case of the main resonance is presented in Figs. 4, 5

for the transient and the steady state. The data assumed for the calculations are as follows:

.

Figure 4.  Time courses of the body (transient vibration) obtained analytically and numerically 

(resonance case).

Figure 5.  Time course of the body (steady state vibration) obtained analytically and numerically 

(resonance case).

The obtained results clearly exhibit powerful of the employed approximate analytical method.

5.1. Steady-state resonant responses

When the transient processes disappear, the forced system can reach the steady state oscillations. In 

order to study this case it is convenient to introduce the modified phase into equations

(31) – (32) which allows to transform them into the following counterpart autonomous form

, (34)

. (35)

Fixation of the values of the amplitude and the modified phase is characteristic for the steady state

solutions. Consequently, zeroing the derivatives of both the amplitude and the modified phase in 
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modulation equations (34) - (35) yields the conditions of the steady state in the form of the set of two 

following equations

, (36)

. (37)

The resonance curves with regard to the amplitude and the modified phase, obtained through

equations (36) – (37) are presented in Figs. 6, 7 for the following fixed parameters:

.

Figure 6.  Resonance curve for the amplitude of .

Figure 7.  Resonance curve for the modified phase of .

In Figures 6 - 7 the stable branches are depicted in red color, whereas unstable ones in blue color.

5.2. Stability of the resonance curves

In order to examine the stability of the steady-state solution in the sense of  Lyapunov, we analyze

the non-stationary solutions of equations (34) – (35) that are close to the steady state solutions .
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Introducing the functions that can be treated as small perturbations, one can assume the 

following non-stationary solution

. (38)

Next, substituting expressions (38) into equations (34) – (35), linearizing the obtained equations and 

noting that are the steady-state solutions, we get

, (39)

. (40)

The characteristic matrix of the homogeneous differential equations (39) – (40) has the form

. (41)

If the real parts of all eigenvalues of the matrix A are negative, then the fixed point relating

to the steady state solution is asymptotically stable in the sense of Lyapunov.

The analytical form of equations (36) – (37) which determine the resonance response functions

allows for predict behavior of the system in various conditions. In Figs. 8, 9 there is presented the 

influence of the external excitation amplitude on the shape of the response curves (

).

Figure 8.  Influence of the external force amplitude on the system response amplitude.
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Figure 9.  Influence of the external force amplitude on the modified system phase.

6. Conclusions

The dynamics of the lumped system containing two serially connected nonlinear springs has been 

investigated. The mathematical model consists of the differential and algebraic equations, which 

requires the appropriate modification of the asymptotic approach in order to deal with the considered 

mechanical system. The forced vibration in two cases have been analyzed: far from resonance and in

the resonance conditions. The approximate analytical solution to the governing equations has been 

achieved. Its analytical form allows for quantitative and qualitative analysis of the behavior of the 

system for wide range of the characteristic parameters. The correctness of the results has been 

confirmed by the numerical calculations. 
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