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Abstract: A non-linear magnetic pendulum system has been studied theoretically and 

numerically. The main component of the system is a pendulum equipped with a 

neodymium magnet, which is “kicked” by an alternating magnetic field form an 

electrical coil underneath. The current signal which flows through the coil is repeatedly 

switched on and off with a given frequency and a duty cycle. Switched on magnetic 

field introduces a two-well potential instead of a single-well gravitational one, what 

results in two stable fixed points and one saddle from a dynamical point of view. 

Describing the system with a discrete two-state equation, different modes of regular 

motion have been analyzed. The excitation signal parameters set has been identified for 

a special type of systems trajectory. Existence of different solutions has been examined 

in terms of switching signal parameters, that is a frequency and a duty cycle. Obtained 

numerical results from discrete as well as continuous simulative models have been 

justified against experimental data from a specially constructed laboratory stand.

1. Introduction

The content of the presented paper focuses on the behavior of an electro-magneto-mechanical system 

whose the main part is a pendulum. Recent years have shown a growing interest in that kind of systems, 

it is a result of searching for novel methods of excitation in mechanical engineering as well as 

pendulums are easy-to-built examples of strongly non-linear mechanical systems.

The experiment setup suggested by Duboshinsky [1–3] involves a pendulum with a magnet 

suspended above the inductance coil connected to an alternating current source. The orientation of 

solenoid is perpendicular to the pendulum. The system exhibits quantized modes regarding changes in 

the system’s parameters such as frequency of current or length of the pendulum. The disturbances of 

these parameters can cause the jumps of system trajectory from one mode to another, those jumps 

imitate the “quantum jumps” of atomic physics. A similar experiment was conducted by J. Bethenod

[2,4]. He reported the phenomenon of growing and sustained oscillations exhibited by a pendulum with 

a ferromagnetic bob embedded in vary inductance generated by a coil. The pendulum revealed different 

kinds of behavior in terms of electrical circuit’s parameters. The steady-state of oscillations was 

obtained for an electrical circuit with a predominant reactance. Furthermore, with predominant 

resistance the oscillations decayed more rapidly than in the case when the coil was unexcited. Sustained 

oscillations of definite amplitude depended on the reactance of the coil, the voltage and the frequency 
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of excitation as well as internal damping of the mechanical system. Damgov and Popov [5] studied 

numerically and analytically a kick-excited, self-adaptive pendulum system. Attractor set of the system 

has been analyzed by multiple bifurcation diagram as well as complex dynamics, evolution and the 

fractal boundaries of the multiple attractor basins. Siahmakoun et al. [6] investigated experimentally 

and numerically a driven pendulum in the repulsive magnetic field. They obtained a different kind of 

attractors and their transformations regarding the system’s parameters such as the distance between 

magnets and frequency of a driven force. Wojna et al. [7] studied a dynamics of a double pendulum 

driven by external torque, while the lower link of the pendulum has been equipped in a strong magnet 

acting on the other magnet fixed to the rig’s frame. Chaotic and regular motion have been obtained 

numerically and experimentally and discussed. Numerous of presented regular motions have featured 

a multiperiodic form. The system of two coupled pendulums subjected to the alternating magnetic field 

has been examined by Polczyński et al. [8,9]. Numerical and experimental investigation justified the

existence of not only a chaotic and regular motion but also quasi-periodicity. Computed basins of 

attraction have shown the richness of symmetric system’s responses in terms of different initial 

conditions.

2. Experimental setup and physical model

In this section, we present the experimental rig which has been constructed in our department as well 

as its physical model with forces and moments of forces acting on it. The experimental rig and the 

physical model of the system are shown in Fig. 1a and Fig. 1b, respectively.

Figure 1.  Experimental setup of a single magnetic pendulum (a) and its physical model (b) where: 1 –

pendulum, 2 – neodymium magnet (not visible), 3 – electrical coil, 4 – brass pivot, 5 –

rubber elastic element and 6 – torque transducer.
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The main parts of the system are a single physical pendulum (1) equipped with a neodymium magnet 

(2) (not visible in Fig.1) at the end of the link and an electrical coil (3) placed underneath. The pendulum 

is fixed to a brass pivot (4) which is connected with an elastic rubber element (5). The other side of the 

mentioned element has been fixed to the stationary torque transducer (6). The pendulum’s rod is 

subjected to a gravitational force mg and a torque Mmag being a result of repulsive magnetic forces

coming from the electric coil. Force mg is put in a center of mass of the pendulum and distance between 

this center and the axis of rotation is denoted as s. The resistance of the motion is introduced as a torque 

MD. It is a sum of all damping factors such as viscous friction, dry friction and internal damping of the

elastic element. Moreover, stiffness of the elastic element induces a torque MS.

The repulsive force generated by the coil is realized by a rectangular current waveform which flows 

inside the circuit. Fig. 2 pictures particular parameters which are regulated, that is the frequency

and the duty cycle , current’s amplitude I was set on 1A.

Figure 2.  The rectangular current signal flows through the electric coil, where τ is a period of the 

signal, τON is a time when the coil is powered and τOFF is a time when the coil is switched

off.

Angular position of the pendulum has been measured by an incremental optical encoder HEDS-

9040#J00, the smallest angular displacement which can be detected is 0.36°. LabVIEW software and 

NI USB-6341 device were used for the data acquisition process.

3. Mathematical modeling of the system

In this paper two approaches to the systems modeling are presented. The first approach is based on one

non-autonomous ordinary differential equation (ODE) describing the system’s motion, where the coil’s 

current rectangular signal is modelled with a continuous approximation. The second approach assumes 

that the coil current signal is discrete, i.e. the coil is instantaneously switched on or off. In this case 

motion of the system is described with two different autonomous ODEs, which are switched between 

themselves accordingly to the set frequency and the duty cycle. In this section, we present the 

conceptions of these two approaches as well as a mathematical model of electromagnetic interaction. 

Some nomenclature in the section is based on work [5].
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3.1. Electromagnetic interaction between a neodymium magnet and an electric coil

The electromagnetic interaction between the magnet and the coil has been investigated previously in 

our work [8]. The proposed mathematical model was based on experimental data of the torque generated 

by a steady magnetic field. The complexity of the mentioned model has encouraged us to develop a

simpler model to accelerate numerical computation. The simpler model was yielded by the potential 

analysis. Mathematically, a character of the potential energy generated by the coil-magnet interaction 

in our system can be approximated by the Gaussian peak function. The mathematical formula used to 

describe the magnetic potential is as follows

, (1)

where coefficient a, b are constant and depend on current amplitude. According to the mechanical 

definition of the potential, we can calculate torque Mmag* acting on the pendulum for steady coil’s 

current as:

. (2)

Fig. 3a depicts the potential of the system. In the case of the one-well potential the system is subjected 

only to gravitational and elastic element’s forces. In the case of the powered coil the two-wells potential 

is obtained. One can notice that, the significant differences between these two kinds of potentials occur

only in so-called “active zone”, which is placed between angles ±φA. Outside of the active zone, the 

influence of the electromagnetic interaction on the pendulum can be neglected. The experimental 

measurement and approximation (Eq. 2) of the torque Mmag* are shown in Fig. 3b.

(a) (b)

Figure 3.  The one-well and two-well potentials of the system (a); The experimental measurement and 

approximation of the torque Mmag* (b).

3.2. Non-autonomous mathematical model

Taking into account the classical mechanics the governing equation of the system can be written as one 

ODE in a following way
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, (3)

where J is the pendulum’s moment of inertia, ce and ke denote viscous damping and stiffness of the 

elastic element. Term mgs stands for a torque of the gravitational force mg at arm s. Moreover, basing 

on the experimental measurements we decided to model the damping which comes from the 

rolling bearings with the following function:

, (4)

where Fc is the value of the simple Coulomb friction, vs represents so-called Stribeck velocity and the 

Fs denotes the value of static friction when the pendulum does not move. Term c is viscous damping 

coefficient, whereas ε is a regularization parameter. Because, the magnetic interaction is possible only 

when the current flows through the coil, in Eq. 3 the value of Mmag* is multiplied by dimensionless 

current signal I(t) (see Fig. 2) described by the following formula [8]

, (5)

where and . Term w is a percentage duty cycle, f [Hz] stands for the 

frequency and is a regularization parameter.

3.3. Discrete mathematical model

The main goal of this approach is to eliminate the continues form of the current signal from the motion’s 

equation. The goal can be achieved by dividing the motion into two different states. Each of the states 

is described by one autonomous ODE. The occurrences of the relevant states are related to times 

calculated on the basis of frequency and duty cycle of the current signal. The first state corresponds to

the time when the coil is switched off and is governed by the following equation

, (6)

whereas the equation of the second state corresponding to the switched-on coil is as follows

. (7)

As a result, the continues coil current signal has been discretized. Parameters used in Eqs. 6 and 7 have 

the same description as parameters in the subsection 3.2. The trajectory of the motion is a set of 

solutions received in numerical integration of the Eqs. 6 and 7. The initial conditions employed to 

integration process have been taken from the last point of a preceding state’s solution. The values of 

system’s parameters were as follow: a=0.0425 [Nm rad], b=0.0181 [rad2], J=6.787 10-4 [kgm2],
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mgs=5.800 10-2 [Nm], ke=1.742 10-2 [Nm/rad], ce=1.282 10- 4 [Nms/rad], Fc=2.223 10-4 [Nm], 

Fs=4.436 10-4 [Nm], φA=0.3484 [rad], vs=0.5374 [rad/s], c=7.369 10- 5 [kg m2], ε=5.759 [-], ϵ=200 [-].

4. Experimental and numerical investigation of 1-period and one-side pendulum’s 
oscillation

In this section, we present experimental and numerical investigations of one-side oscillations of the 

pendulum. By one-side oscillations, we mean oscillations of the pendulum without moving through the 

lower and upper equilibrium positions. Our studies focus on the influence of the duty cycle and 

frequency of the current signal on the motion. Experimentally, one can observed that for set constant 

frequency f exists a wide range of the duty cycle w for which the pendulum’s oscillation does not 

change. Fig. 4 displays experimentally obtained phase plots of these same oscillations for various 

excitation signal’s parameters.

(a) (b) (c)

Figure 4.  Experimental phase plots and Poincaré sections for a fixed frequency f=3.5 Hz but different 

duty cycles w: (a) 30%, (b) 60% and (c) 80%.

It is well visible that for a given frequency and different duty cycles it is possible to hold similar

oscillations’ amplitude, angular velocity and periodicity. In order to understand and explain this 

behavior we started our analysis from determining the initial conditions, which have to be fulfilled to

achieved one-side oscillation. In Fig. 5 we can distinguish two states of pendulum’s motion and 

characteristic points, which pendulum has to cross during oscillation. The first state starts when the

pendulum is freely falling from the initial point (φ0,ω0=0) to the point (φk,ωk) where the coil is switched 

on what results in the magnetic barrier (blue arrows in Fig. 5a). We call this point “the kick”, because 

the system is “kicked” to the higher energy state (green arrow in Fig. 5a). The system goes to the second 

state when the pendulum bounces from the magnetic barrier and goes away from it (red arrows in Fig. 

5a). Fig. 5b depicts a phase plot of trajectory with colored line segments corresponding to the systems 

states. Taking into consideration the relations shown in Fig. 5, the 1-period motion can exist only for 

particular values of boundary conditions (φk,ωk), which used as initial conditions in Eqs. 7 result in the 

trajectory which crosses the point ( φ0,ω0=0). The set of these values has been obtained numerically.

Frist, a range of search was limited by boundaries following the motion scenario shown in Fig. 5:

(i) the kick must be within the active zone,
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(ii) the minimum initial angle φ0 cannot be smaller than φA (yellow line (2) in the Fig.6),

(iii) the initial angle φ0 cannot provide to potential well escape (blue line (1) in the Fig. 6).

(a) (b)

Figure 5.  The potential plot (a) and phase plot (b) with characteristic points and stages during one-

side pendulum’s oscillation.

The obtained set of (φk,ωk) and boundary lines are shown in Fig. 6. For each point (φk,ωk) the time t1

and t2 (see Fig. 5a) of the motion’s states have been computed. These times are related to the frequency 

and duty cycle of the current signal I(t) in the following way: and .

In Fig. 7, the line labeled as 3 shows the values of w and f that have been computed for the basic scenario 

shown in the Fig. 5a. However, since we have noticed before, that outside the active zone differences 

between two states are insignificant, switching off the coil (transition from state 2 to 1) can be 

performed anywhere outside the active zone. For those same (φk,ωk) one can found the shortest time t2

(spread from point (φk,ωk) to some point before (φ0,ω0)) which corresponds to the minimum duty cycle 

w – line labeled as 1 in the Fig.7. The similar situation concerns calculating the longest time t2 (spread 

from point (φk,ωk) to point after (φ0,ω0)) what corresponds to the maximum w – line labeled as 2 in the 

Fig.7. In other words, the coil can be switched off just after the system leaves the active zone, or just 

before the system enters it.

Figure 6.  (1), (2) – Boundary conditions; (3) – set of (φk,ωk) fulfilling period-1 motion 

scenario.
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Figure 7.  Range of w and f giving 1T and one-side oscillations; (1) – solution described in 

text; (2) – minimum w; (3) – maximum w.

Values of frequency and duty cycle get from the green area in Fig. 7 result in period-1 and one-well 

oscillating solution of the pendulum’s motion. The comparison of numerical results to previously 

presented in Fig.4 solutions is shown in Fig. 8.

(a)

(b)

Figure 8.  Numerical results of 1T solution calculated by using (a) non-autonomous mathematical 

model (Eq. 3) and (b) discrete mathematical model (Eqs. 6 and 7).

The comparison of the phase plots has justified that both non-autonomous and discrete models give 

those same solutions as experiment for fixed frequency 3.5 Hz and three different duty cycles.

Numerical investigation have yielded that the amplitude of oscillations increases with decreasing 

frequency of current signal. Fig. 9 presents behavior of the system for different values of the frequency.

1

2

3

438



Figure 9.  Influence of increasing frequency on oscillation amplitude.

5. Concluding remarks

The nonlinear one-degree-of-freedom system has been investigated numerically and experimentally.

The system is composed of a single magnetic pendulum elastically coupled with a fixed base and 

excited by an alternating magnetic field. Two approaches of mathematical modeling of the system’s 

motion have been presented as well as the model of magnetic interaction. The one-well oscillation has 

been analyzed in terms of parameters of the current signal: duty cycle and frequency. The numerical 

computation has yielded a range of duty cycles and frequencies for which the system exhibits period-1

motion. Both non-autonomous and discrete mathematical models provide similar results which are in 

good agreement with experiment. The work presents promising results which can be used to control so-

called “kicked” systems. The future studies will concern more complicated scenarios of the 1-period

motion.
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