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Abstract: The multi-parametric space ‘number of tumor cells — tumor cell volume —
glucose level — diffusion saturation level” and its corresponding 3D initial state space
components were studied. It was shown that the choice of parameter sets from this
space controls the carcinogenesis in biological systems. The model describing
interactions of the tumor cells, matrix-metalloproteinases, matrix-degradative
enzymes and oxygen was used to simulate the nonlinear multi-scale cancer invasion.
The technique based on wandering trajectories analysis was applied to quantify
chaotic cancerous attractors in the studied model. Presented are the results of
evaluation of conditions in all control parameter planes as well as the modes to inhibit
and/or stabilize carcinogenesis.

1. Introduction

This work is a continuation of the study presented in [1] where, based on the performed analysis of
the mathematical model describing the tumor development in a biological system, the parameter sets
resulting in occurring cancer chaotic attractors have been found in control parameter plane ‘number of
tumor cells versus diffusion saturation level’. Also it was ascertained a significant influence of the
biological system initial state to carcinogenesis and it was illustrated by regions in phase planes of
initial conditions. The obtained resluts allowed under definite conditions a controlling and stabilizing
unpredictable behavior of metabolic reactions and suppressing carcinogenesis.

It should be noted, that the contradictions found in the recent literature (it is reported, for
instance, in [2]) concerning to an influence of glucose level and oxygen concentration on
carcinogenesis can be explained not only by fact that in those studies the initial state of the biological
system was not taking into account, but also that a mutual influence of a// components of the multy-
parametric space of the models studied was not taking into account. In the present work a significant
and complex mutual influence of all components of the multy-parametric space ‘number of tumor
cells — tumor cell volume — glucose level — diffusion saturation level” as well as of the 3D initial state
space components on inhibition/amplification of carcinogenesis in biological systems was
ascertained. The evolution of conditions conducive to cancer invasion was defined depending on

parameters of the multy-parametric space.
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2. Mathematical model

Cancer is generally defined as a malignant tissue growth resulting from an uncontrolled division of
cells [3]. In the model studied in this work, the tumor development is governed by the inhomogeneous

dissipative set of differential equations [4-7, 2]:
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where n denotes the tumor cell density, f is the matrix—metalloproteinases (MM) concentration, m
corresponds to the matrix-degradative enzymes (MDE) concentration, and ¢ denotes the oxygen
concentration. Parameters a is a tumor cell volume, f — glucose level, y — number of tumor cells, J —
diffusion saturation level; # and x are coefficient that characterise the growth and decay of MM and
MDE concentration respectively; v , m, ¢ are parameters that govern growth and decay of the oxygen
concentration.

The model (Eqs. 1-4) possesses three chemical equilibria
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As mentioned in [8] pertaining to the self-organizing chemical systems: as soon as the product is
also a part of the same chemical reaction, the system can express unstable behaviour which can be
controlled by the reaction parameters. Depending on control parameter values and initial conditions,
the considered biological cancerous cell system can also approach different states: a) stationary
equilibrium state where any changes are damped; b) stable periodic chemical process or so called
‘chemical clock’ (a limit cycle); ¢) state of chemical instability with chaotic behaviour of MM, MDE

and oxygen concentrations.

3. Numerical results

Cancer chaotic attractors exist within certain parameter ranges of mathematical model (Eqs. 1-4)

describing the tumor development in a biological system. In this section multy-parametric space
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‘number of tumor cells — tumor cell volume — glucose level — diffusion saturation level’ is studied. To
quantify conditions for carcinogenesis the technique based on the wandering trajectories analysis [9,
10, 1] was applied.

After a discretisation of the multy-parametric space, the governing equations (Eqs. 1-4) are twice
solved numerically with two nearby initial conditions. Initial conditions of the nearby trajectories are

distinguished by 0.5 percent with ratio to the characteristic vibration amplitudes 4; 4., 4. defined as

follows
1 .
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Characteristic vibration amplitudes A, A., A. are calculated for all nodal points of the multy-
parametric space simultaneously with integration of the governing equations (Eqs. 1-4). After

integration of the governing equations (Eqs. 1-4), the condition
el Tl (I () =F(O>ad )V () =m(c)f>an,)v (e()-2 ([ >ad) an

was verified. Here T is the time period for the simulation; [, #,] is the time interval, where transient
processes are damped. The manifold of the nodal points of the multy-parametric space, for which the
inequality (Eq. 11) is satisfied, resulting in setting up the regions of chaos.

An evolution of the chaotic regions in the control parameter plane 'tumor cell volume vs glucose
level' (Bxn, an), (05Prn<300, 0<an<l10), depending on magnitude of diffusion saturation level
09p=0.5, J¢p=1.0 and 0Jp=2.0 for the model (Eqs. 1-4) is observed in Fig. 1 (a), (b), (c). Other
parameters n=50, y= 100, #=50, k=1, v=0.5, ©®=0.57, »=0.025 are fixed and the initial conditions are
taken £{0)=5.0; m(0)=5.0; ¢(0)=10.0.

On the increase of the diffusion saturation level, the regions of conditions conducive to cancer

invasion are expanding. For the parameter ranges considered chaotic cancer attractors are generated
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Figure 1. Control parameter plane (Sxn, an) — 'tumor cell volume vs glucose level': evolution of

conditions conducive to cancer invasion with increasing magnitude of diffusion saturation

level (a) 0¢p=0.5; (b) Jdp=1.0; (c) dp=2.0.

for glucose levels prxn<f.xn, where pf.xn=175.0 at diffusion saturation level dp=0.5 (Fig. 1, (a)),
Loxn=270.0 at op=1.0 (Fig. 1, (b)) and for any glucose level at dp=2.0 (Fig. 1, (c)). It should be noted,
all obtained regions in the parametric space have complex structure and substantially depend on other
parameters of the model (Egs. 1-4) including initial conditions.

An evolution of the chaotic regions in control parameter plane 'number of tumor cells vs tumor
cell volume' (an, y), (0<an<10, 0<y<200), depending on glucose level prxn=2.5, pxn=250.0, and
Prn=500.0 for the model (Eqs. 1-4) is observed in Fig. 2 (a), (b), (c). Other parameters dp=1.2,
n=50, 6=48.0, =50, k=1, v=0.5, ©=0.57, =0.025 are fixed and the initial conditions are taken
A0)=5.0; m(0)=5.0; ¢(0)=10.0.

Fig. 2 demonstrates, that for the parameter ranges considered, increase in glucose level

substantially decreases a risk of cancer invasion in the biological system (see Fig. 2 (c): no chaotic
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Figure 2. Control parameter plane (a7, y) — "number of tumor cells vs tumor cell volume": evolution of
conditions conducive to cancer invasion with increasing glucose level: (a) fxn=2.5; (b)

Prn=250.0; (c) Prxn=500.0.

cancer attractors when y<140.0 v a7<2.0 v an>7.0 at fxn=500.0). It should be noted, depending on
accepted parameters, increase in the diffusion saturation level can lead to both suppression and
generation of conditions conducive to cancer invasion (figures and diagrams, confirming this
statement, are not presented here due to a brief content of this paper).

We can observe also, in the parametric space 'number of tumor cells vs tumor cell volume' there
is some critical threshold a=o.,, that chaotic cancerous attractors exist only for a>a., (see Fig. 2 (a),
(b), (¢): a.-= 1.9). It is clear, 0. depends on other parametes of the model (Eqs. 1-4) and a.., increases
for bigger magnitudes of diffusion saturation level.

An evolution of the chaotic regions in the control parameter plane 'tumor cell volume vs

diffusion saturation level' (d¢, an), (0<d9p<3.0, 0<ax<10.0), depending on number of tumor cells
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Figure 3. Control parameter plane (dg, ar) — "tumor cell volume vs diffusion saturation level":
evolution of conditions conducive to cancer invasion with increasing number of tumor cells:

(a) y=70.0; (b) y=150.0; (c) y=200.0.

y=70.0, y=150.0 and y=200.0 for the model (Egs. 1-4) is observed in Figure 3 (a), (b), (c). Other
parameters fxn= 300.0, n=50, p=6.0, #=50, k=1, v=0.5, ©®=0.57, p=0.025 are fixed and the initial
conditions are taken f{0)=5.0; m(0)=5.0; ¢(0)=10.0.

The study of the parametric space 'tumor cell volume vs diffusion saturation level' confirms
again a substantial mutual influence of all parameters of the model (Egs. 1-4) to cancer invasion.
Indeed, at comparatively low glucose levels (for instance, fxn=2.5) regions of chaotic cancerous
attractors are suppressed with an increase of number of tumor cells (figures and diagrams, confirming
this statement, are not presented here due to a brief content of this paper) while for higher glucose
levels (for instance, fxn=300.0) cancer invasion risk strengthens on the increase of number of tumor

cells (see Fig. 3 (a), (b), (¢)). Generally, at fixed number of tumor cells the increase in glucose level
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Figure 4. Control parameter plane (dg, fxn) — 'glucose level vs diffusion saturation level': evolution of
conditions conducive to cancer invasion with increasing number of tumor cells: (a) y=20.0;

(b) y=100.0; (c) y=200.0.

has a suppressing effect on carcinogenesis (figures and diagrams, confirming this statement, are not
presented here due to a brief content of this paper).

An evolution of the chaotic regions in the control parameter plane 'glucose level vs diffusion
saturation level' (dg, frn), (0<09<3.0, 0<pxn<300), depending on number of tumor cells y=20.0,
y=100.0 and y=200.0 for the model (Egs. 1-4) is observed in Figure 4 (a), (b), (c). Other parameters
on= 8.0, n=50, a=0.16, =50, k=1, v=0.5, ©=0.57, »=0.025 are fixed and the initial conditions are
taken f{0)=5.0; m(0)=5.0; c(0)=10.0.

For the considered planes 'glucose level vs diffusion saturation level' as sections of the multy-
parametric space of the model (Egs. 1-4) both for comparatively small and for comparatively large
tumor cell volumes, a consistent pattern is observed: with an increase in the number of tumor cells,

the regions of chaotic cancerous attractors in this plane (dg, fxn) first increase (see transition from
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Figure 5. Control parameter plane (fxn, ) — 'number of tumor cells vs glucose level': evolution of
conditions conducive to cancer invasion with increasing tumor cell volume: (a) a#=3.0; (b)

on=5.0; (c¢) an=8.0.

Fig. 4 (a) to Fig. 4 (b)) and then decrease (see transition from Fig. 4 (b) to Fig. 4 (c)). In most of the
previous cases, an increase in glucose level led to the suppression of regions of chaotic cancerous
attractors. However, in the parametric plane (d¢, fxn) there are regimes (for instance, at an= 3.0, y=
100.0; an= 5.0, y= 100.0, etc.) corresponding to absence of conditions for carcinogenesis at definite
values of glucose level, while a cancer invasion appears when glucose level increases (figures and
diagrams, confirming this statement, are not presented here due to a brief content of this paper).

An evolution of the chaotic regions in the control parameter plane mumber of tumor cells vs
glucose level' (fkn, y), (05fxn<300, 0<y<200), depending on tumor cell volume an=3.0, an=5.0 and
on=8.0 for the model (Eqs. 1-4) is observed in Figure 5 (a), (b), (c). Other parameters dp=1.0, n=50,
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Figure 6. Amplitude level contours of (a) MM concentration in (fxn, az) control parameter plane at
y=100.0, dp=1.0; (b) MDE concentration in (a7, y) plane at fxn=250.0, 6p=2.0; (c) oxygen
concentration in (dgp, an) plane at fxn=300.0, y=150.0; (d) MM concentration in (¢, fxn)
plane at ay=8.0, y=100.0; (¢) MDE concentration in (fxn, y) plane at 047=8.0, dp=1.0.
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0=40.0, =50, x=1, v=0.5, ©=0.57, ¢=0.025 are fixed and the initial conditions are taken f0)=5.0;
m(0)=5.0; ¢(0)=10.0.

Under conditions considered for comparatively low diffusion saturation levels, for instance dgp=
0.5, chaotic cancerous attractors regions are suppressed with increasing tumor cell volumes and vice
versa: for more higher diffusion saturation levels, for instance dp= 2.0, with increasing tumor cell
volumes (an= 3.0, an= 5.0, an= 8.0) the cancer invasion is increased (figures and diagrams for both
cases of diffusion saturation levels dp= 0.5 and Jp= 2.0, confirming this statement, are not presented
here due to a brief content of this paper). In Fig. 5 (b), (c) we can observe: there is some glucose level
threshold f.= f.(y) such that no carcinogenesis while f>p.(y). So, passing this threshold in the
direction of increase, the definite glucose level completely suppresses carcinogenesis. It should be
noted, Fig. 5 (a), where chaotic cancer attractors regions have an inclined stripe form, demonstrates
another scenario. Thus, at any= 3.0, dp=1.0 (Fig. 5 (a)) (or in other cases, for instance, (an= 3.0,
09p=2.0) or (an= 5.0, 69p=2.0) etc.) in the parametric plane (fxn, y) with increasing of glucose level the
state ‘no conditions for carcinogenesis’ passes to the state ‘cancer invasion’ and then again passes to
the state ‘no conditions for carcinogenesis’. That is, depending on other parameters of the model (Egs.
1-4), increasing in glucose level can both suppress and generate carcinogenesis.

For all studied control parameter planes the corresponding amplitude level contours of matrix-
metalloproteinases (MM), matrix—degradative enzymes (MDE) and oxygen concentrations have been
obtained and juxtaposed with them. In all cases the carcinogenesis is accompanied by significant
increase in chemical oscillation amplitudes of the MM, MDE and oxygen concentrations. Some
amplitude level contours of these characteristics are reported in Fig. 6.

Amplitude level contours of matrix-metalloproteinases (MM) concentrations are presented in
Fig. 6, cases (a) and (d). Case (a): control parameter plane (fxn, an) ‘tumor cell volume vs glucose
level’ at y= 100.0, dp= 1.0 in accordance with Fig. 1 (b) with the same other fixed parameters as for
the case of Fig. (b). Case (d): control parameter plane (Jd¢, fxn) 'glucose level vs diffusion saturation
level' at 0#=8.0, y=100.0 in accordance with Fig. 4 (b) with the same other fixed parameters as for the
case of Fig. 4 (b).

Amplitude level contours of matrix—degradative enzymes (MDE) concentrations are presented in
Fig. 6, cases (b) and (e). Case (b): control parameter plane (az, y) "number of tumor cells vs tumor
cell volume' at fxn= 250.0, dp= 2.0 in accordance with Fig. 2 (b) with the same other fixed
parameters as for the case of Fig. 2 (b). Case (e): control parameter plane (fxn, y) 'number of tumor
cells vs glucose level' at ay=8.0, Jdp=1.0 in accordance with Fig. 5 (c) with the same other fixed

parameters as for the case of Fig. 5 (c).

142



And finally, amplitude level contours of oxygen concentration is presented in Fig. 6 (c) in control
parameter plane (dp, an) 'tumor cell volume vs diffusion saturation level' at fxkn=300.0, y=150.0 in
accordance with Fig. 3 (b) with the same other fixed parameters as for the case of Fig. 3 (b).

Figure 6 demonstrates, that in all cases the carcinogenesis is accompanied by a significant

increase in chemical oscillations amplitudes of MM, MDE and oxygen concentrations.

4. Conclusions

In this study it was demonstrated a significant and complex mutual influence of all components of the
multy-parametric space ‘number of tumor cells — tumor cell volume — glucose level — diffusion
saturation level’ as well as of the 3D initial state space components on inhibition/amplification of
carcinogenesis in biological systems. A nonlinear multi-scale diffusion cancer invasion model that
describes the interactions of the tumor cells, matrix-metalloproteinases, matrix-degradative enzymes
and oxygen was used for simulation. To quantify chaotic cancer attractors the technique based on the
wandering trajectories analysis was applied. Conditions conducive to cancer invasion were defined
depending on parameters of the multy-parametric space. The numerous figures presented describe the
evolution of these conditions in the process when some parameters of the multy-parametric space
were changed. Amplitude level contours of matrix—metalloproteinases, matrix—degradative enzymes
and oxygen concentrations have been obtained and juxtaposed with the corresponding parametric
planes. In all cases the carcinogenesis is accompanied by significant increase in chemical oscillation
amplitudes of matrix—metalloproteinases, matrix—degradative enzymes and oxygen concentrations.
The results obtained allow evaluation of conditions in all control parameter planes as well as the

modes to inhibit and/or stabilize carcinogenesis.
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