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Abstract The paper deals with the analytical investigation of the behaviour of the
harmonically excited physical pendulum suspended on the nonlinear spring. The
asymptotic method of multiple scales (MS) has been used to derive approximate
solutions in the analytical form. The applied approach allows one to perform a qual-
itative analysis of the behaviour of the system. MS method gives possibility, among
others, to recognize resonance conditions which can appear in the system.

1 Introduction

Although pendulums are relatively simple systems, they can be used to simulate the
dynamics of a variety of engineering devices and machine parts. The behaviour of
pendulum-type mechanical systems with nonlinear and parametric interactions is
complicated, and hence its understanding and prediction are important from a point
of view of both the theory and application. The coupling of the equations of motion
results in a possibility of autoparametric excitation and is connected to the energy
exchange between vibration modes [6]. Various kinds of pendulums are widely dis-
cussed in numerous references and analytical investigations are recently of great
interest of many researchers. Main and parametric resonances of the kinematically
driven spring pendulum are studied in the paper [2]. The nonlinear response of a
system including a double pendulum and having three degrees of freedom (DOFs)
is analytically investigated in the paper [5]. Stationary and non-stationary resonant
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dynamics of the harmonically forced pendulum is the subject of the paper [4]. The
physical pendulum suspended on the spring-damper which has linear features has
been modelled and discussed in the article [1]. The present paper extends these inves-
tigations and presents further development of the model and results of asymptotic
analysis.

2 Problem Formulation and Equations of Motion

Plane motion of a rigid body mounted on a spring-damper suspension is analyzed in
the paper. The scheme of the system is presented in Fig. 1. The spring is assumed to
be massless and nonlinear. The non-linearity is of the cubic type, and k1 and k2 are
constant elastic coefficients. L0 denotes the spring length in the non-stretched state.
There is a purely viscous damper having a damping coefficient C1, and the damper
and the spring are arranged in parallel. The rigid body of mass m is connected to this
system via a pin joint A. The distance between the point A and the mass centre C of
the body is denoted by S and called further the eccentricity. The body moment of
inertia relative to the axis passing through the centre of mass C and perpendicular
to the plane of motion is equal to IC . In the direction compatible with the main axis
of the suspension system acts the known force F the magnitude of which changes
harmonically F(t) � F0 cos(�1t). Besides, the system is loaded by two known
harmonically changing torques M1(t) � M01 cos(�2t) and M2(t) � M02 cos(�3t)
shown in Fig. 1. There are also assumed two torques of the viscous nature attenuate
the swing vibration related to the angles � and �, where C2 and C3 are their viscous
coefficients. The body is free in its plane motion, so it has three degrees of freedom.
The time functions X (t), �(t) and �(t) are assumed as the generalized coordinates.
The coordinate X (t) is understood as the total elongation of the spring involving also
the static elongation Xr that satisfies the equilibrium condition

k2 X3
r + k1 Xr � mg. (1)

The kinetic and potential energy of the system are

T � m S Ẋ �̇ sin(� − �) + S m �̇ �̇(L0 + X) cos(� − �) +
1

2
R2

A
m�̇2 +

m

2
(L0 + X)2�̇2 +

m

2
Ẋ2,

(2)

V � 1

2
k1 X2 +

1

4
k2 X4 − mg((L0 + X) cos(�) + S cos(�)). (3)

In Eq. (2) occurs the quantity denoted by RA which is a radius of gyration of the body
with respect to the axis passing through the joint A and perpendicular to the plane
of motion. The radius RA is related to the inertia moment IC by commonly known
parallel axis theorem

m R2
A � IC + mS2. (4)
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Fig. 1 Mass-spring-damper
system
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In order to obtain the equations of motion we write the equations Lagrange equa-
tions of the second kind

d
dt

(
∂L
∂ Ẋ

)
− (

∂L
∂ X

) � Q X , d
dt

(
∂L
∂�̇

)
− (

∂L
∂�

) � Q�, d
dt

(
∂L
∂�̇

)
− (

∂L
∂�

) � Q�, (5)

where L � T − V is the Lagrange function, and the general forces are given by

Q X � F0 cos(�1t) − C1 Ẋ ,

Q� � M02 cos(�2t) − C2�̇,

Q� � M03 cos(�3t) − C3�̇. (6)

The dimensionless form of the equations of motion derived from (5) is as follow

ξ̈ + c1ξ̇ + ξ + α ξ 3 + 3ξrα ξ 2 + 3ξ 2
r α ξ − w2

2(cos ϕ − 1) − (1 + ξ)ϕ̇2

− s cos(ϕ − γ )γ̇ 2 + s sin(ϕ − γ )γ̈ � f1 cos(p1τ), (7)

ϕ̈
(
1 + 2ξ + ξ 2

)
+ w2

2 sin ϕ(1 + ξ) + c2ϕ̇ + 2ξ̇ ϕ̇ + 2ξ ξ̇ ϕ̇

+ s sin(ϕ − γ )(1 + ξ)γ̇ 2 + s cos(ϕ − γ )(1 + ξ)γ̈ � f2 cos(p2τ), (8)

γ̈ + w2
3 sin γ + c3γ̇ + 2

w2
3

w2
2

cos(ϕ − γ )ẋ ϕ̇ − w2
3

w2
2

(1 + ξ) sin(ϕ − γ )ϕ̇2

+
w2

3

w2
2

sin(ϕ − γ )ξ̈ +
w2

3

w2
2

(1 + ξ) cos(ϕ − γ )ϕ̈ � f3 cos(p3τ). (9)
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The frequency ω1 �
√

k1
m and the spring length L � L0 + Xr in the static

equilibrium position are assumed as the reference quantities. The functions
ϕ(τ ) and γ (τ ) of the dimensionless time τ � ω1t are generalized coordinates
related to �(t) and �(t), respectively, whereas ξ (t) is associated with X (t) by
the relation ξ (t) � X (t)/L . The others dimensionless quantities are defined as fol-
lows:

s � S/L , ξ � X/L , ξr � Xr/L ,

c1 � C1
mω1

, c2 � C2
mL2ω1

, c3 � C3

ω1m r2
A L2 , f1 � F0

mLω2
1
, f2 � M01

mL2ω2
1
, f3 � M02

ω2
1m R2

A L2 ,

α � k2 L2

ω2
1m

, w2 � ω2
ω1

, w3 � ω3
ω1

, p1 � Ω1
ω1

, p2 � Ω2
ω1

, p3 � Ω3
ω1

, where ω2
2 � g

L and

ω2
3 � S g

RA
. Dimensionless counterpart of condition (1) is

α ξ 3
r + ξr � w2

2. (10)

Equations (7)–(9) are supplemented by the initial conditions related the generalized
coordinates and their first derivatives

ξ(0) � u01, ξ̇ (0) � u02, ϕ(0) � u03, ϕ̇(0) � u04, γ (0) � u05, γ̇ (0) � u06, (11)

where dimensionless quantities u01, . . . , u06 are known.

3 Multiple Scales Method

The oscillations of the system are investigated in the neighborhood of the equilibrium
position, hence the trigonometric functions of the generalized coordinates can be
substituted by their power series approximations

sin ϕ ≈ ϕ − ϕ3/6, cos ϕ ≈ 1 − φ2/2, sin γ ≈ γ − γ 3/6, cos γ ≈ 1 − γ 2/2. (12)

The method of multiple scales (MSM) is used to solve the initial value problem
described by (7)–(9) and (11). According to this method, we introduce two scales
related to the dimensionless time as follows: the fast scale τ0 � τ and the slow scale
τ1 � ετ , where ε is the small parameter. Then, taking into account the existence of
three scales we assume the following expansion of the functions ξ , ϕ, and γ in the
power series of the small parameter

ξ �
2∑

k�1
εk xk(τ0, τ1) + O

(
ε3

)
, ϕ �

2∑
k�1

εkφk(τ0, τ1) + O
(
ε3

)
, γ �

2∑
k�1

εkχk(τ0, τ1) + O
(
ε3

)
.

(13)
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The ordinary derivatives with respect to time τ are equivalent to the following
differential operators for the two introduced time scales

d
dτ

� ∂
∂τ0

+ ε ∂
∂τ1

,

d2

dτ 2 � ∂2

∂τ 2
0

+ 2ε ∂2

∂τ0∂τ1
+ ε2 ∂2

∂τ 2
1

+ O(ε3).
(14)

Moreover, the amplitudes of generalized forces, all damping coefficients, and the
eccentricity are assumed to be small, therefore they are expressed in the form [3]

ci � ε c̃i , fi � ε2 f̃i , i � 1, 2, 3, s � ε s̃, α � ε α̃, (15)

where each of the quantities c̃i , f̃i , s̃, α̃ can be understood as O(1) as ε → 0.

Substituting, in sequence (12), (13) and (15) into the original Eqs. (7)–(9) and
replacing the ordinary derivatives by the differential operators (14) we obtain the
equations in which the small parameter ε appears in the first, second, and higher
powers. These equations should be satisfied for any value of the small parameter. So,
after ordering each of these equations according to the powers of small parameter we
require that the coefficients of each order of ε equal to zero. Omitting the coefficients
of order higher than two, we obtain a sequence of six equations that should be satisfied
instead of the original equations. We can organize them into two groups:

• equations of the first order approximation

∂2x1

∂ τ 2
0

+ x1 � 0, (16)

∂2φ1

∂τ 2
0

+ w2
2φ1 � 0, (17)

∂2χ1

∂τ 2
0

+ w2
3χ1 +

w2
3

w2
2

∂2φ1

∂τ 2
0

� 0, (18)

• equations of the second order approximation

∂2x2

∂τ2
0

+ x2 � f̃1 cos(τ0 p1) − 3ξ2
r α̃x1 − 1

2
w2

2φ2
1 − c̃1

∂x1

∂τ0
− 2

∂2x1

∂τ0∂τ1
+

(
∂φ1

∂τ0

)2
, (19)

∂2φ2

∂τ2
0

+ w2
2φ2 � f̃2 cos(τ0 p2) − s̃

∂2χ1

∂τ2
0

− w2
2 x1φ1 − c̃2

∂φ1

∂τ0
− 2 x1

∂2φ1

∂τ2
0

− 2
∂x1

∂τ0

∂φ1

∂τ0
− 2

∂2φ1

∂τ0∂τ1
,

(20)

∂2χ2
∂τ2

0
+ w2

3χ2 +
w2

3
w2

2

∂2φ2
∂τ2

0
� f̃3 cos(τ0 p3) − c̃3

∂χ1
∂τ0

− w2
3

w2
2

(
(φ1 − χ1) ∂2x1

∂τ2
0

+ x1
∂2φ1
∂τ2

0

)
−

2 ∂2χ1
∂τ0∂τ1

− 2
w2

3
w2

2

(
∂2φ1

∂τ0∂τ1
+ ∂x1

∂τ0

∂φ1
∂τ0

)
,

(21)
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The applied procedure replace, in the approximate meaning, the original equations
of motion (7)–(9) with the system of six partial differential Eqs. (16)–(21). This
system is solved recursively i.e. solutions of the equations of the lower order are
introduced into the equations of higher order approximation. It is worth to notice
that differential operators are the same for each step of approximation. The operators
of two first equations in every group are mutually independent what significantly
simplifies the solving. In every group, the third equation is coupled with the second
one. This dependence demands solving at first the first two equations at every step
of approximation procedure. Next these solutions are introduced into Eqs. (18) and
(21). The general solution of Eqs. (16)–(17) can be presented in the form

x1 � B1ei τ0 + B̄1e−i τ0 , (22)

φ1 � B2ei w2τ0 + B̄2e−i w2τ0 , (23)

where i denotes the imaginary unit.
The solution (23) is then introduced into Eq. (18) what allows to obtain its solution

χ1 � B3eiτ0w3 + B̄3e−iτ0w3 +
w2

3

w2
2 − w2

3

(
B2ei w2τ0 + B̄2e−i w2τ0

)
. (24)

The symbol Bi for i = 1, 2, 3 in (22)–(24) denotes the unknown complex-valued
functions of time scale τ1, whereas the bar over the symbol denotes its complex
conjugate function.

After introducing solutions (22)–(23) into equations of the second order (19)–(20),
the secular terms appear. Elimination of them leads to the solvability conditions

2i
d B1

dτ1
+ 3B1α̃ z2

r + ic̃1 B1 � 0, (25)

2iw2
d B2

dτ1
+ ic̃2w2 B2 +

w2
2w2

3

w2
2 − w2

3

s̃ B2 � 0. (26)

There exist also two equations that are conjugate to Eqs. (25)–(26).
Taking advantage of solutions (22)–(24) and conditions (25)–(26), the solutions

to Eqs. (19)–(20) are as follows

x2 � 3e2i w2 τ0 w2
2 B2

2

2
(
−1 + 4w2

2

) + w2
2 B2 B̄2 +

ei p1τ0 f̃1

2
(

1 − p2
1

) + CC, (27)

φ2 � − ei(1+w2)τ0 w2(2 + w2)

1 + 2w2
B1 B2 +

ei(−1+w2)τ0 w2(−2 + w2)

−1 + 2w2
B̄1 B2 +

ei w3τ0 w2
3 s̃

w2
2 − w2

3

B3 +
ei p2τ0 f̃2

2(w2
2 − p2

2)
+ CC. (28)

Substituting all the previously obtained solutions i.e. (22)–(24), (27)–(28) and con-
ditions (25)–(26) into Eq. (21), and then demanding of elimination of secular terms
lead to the following solvability condition
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−iw3 B3c̃3 +
w6

3 s̃

w2
2

(
w2

2 − w2
3

) − 2iw3
∂ B3

∂τ1
� 0. (29)

Beside, we obtain also the condition which is conjugate to (29).
The solution to the Eq. (21) in the following general form

χ2 �
ei (1+w2)τ0 w2

3

(
−1 + 2w3

2 + w4
2 − w2

2w2
3 − 2w2

(
1 + w2

3

))
B1 B2

(1 + 2w2)(w2 − w3)(1 + w2 − w3)(w2 + w3)(1 + w2 + w3)
+

ei (1+w3)τ0 w2
3 B1 B3

w2
2(1 + 2w3)

+
ei (−1+w2)τ0 w2

3

(
1 + 2w3

2 − w4
2 + w2

2w2
3 − 2w2

(
1 + w2

3

))
B̄1 B2

(−1 + 2w2)(w2 − w3)(−1 + w2 − w3)(w2 + w3)(−1 + w2 + w3)
+

ei (−1+w3)τ0 w2
3 B̄1 B3

w2
2(−1 + 2w3)

−
i ei w2τ0 w2

3

((
w4

3 − w2
2w2

3

)
c̃2 + w2

(
w3

2 − w2w2
3

)
c̃3 + i w2w4

3 s̃
)

B2

(−1 + 2w2)
(

w2
2 − w2

3

)
(−1 + w2 − w3)(−1 + w2 + w3)

+
ei p2τ0 p2

2w2
3 f̃2

2w2
2

(
p2

2 − w2
2

)(
p2

2 − w2
3

)

− ei p3τ0 f̃3

2
(

p2
3 − w2

3

) (30)

has been obtained analytically.
The solution of the considered problem, given by (22)–(24), (27)–(28) and (30),

is valid when the oscillations take place away from any resonance. However, the
analytical form of the approximate solution of the problem allows to recognize the
parameters of the system for which the resonances occur. The resonance case appears
when any of the polynomials that stand in the denominators of the solutions (27)–(28)
and (30) tends to zero. The resonances detected in this way can be selected as:

(i) primary external resonance, when p1 = 1, p2 = w2, p3 = w3;
(ii) internal resonance, when w2 = 1/2, w2 = w3, w3 = 1/2, p2 = w3, w2 + w3 = 1,

w2–w3 = 1.

Satisfying of one or more of the conditions listed above, implies the need to modify
the method of solution, what is described in Sect. 5.

4 Non-resonant Vibration

The solvability conditions (25), (26) and (29) (together with their complex conjugated
forms) constitute a set of constraints with respect to unknown functions B1(τ1),
B̄1(τ1), B2(τ1), B̄2(τ1), B3(τ1), B̄3(τ1). They have form of the ordinary differential
equations with respect to these functions. Let us postulate that the unknown complex-
valued functions Bi (τ1) are of the following exponential form

Bi � ãi (τ1)

2
ei ψi (τ1), and ai � εãi , i � 1, 2, 3, (31)

where ai (τ1), ψi (τ1) are real-valued functions and have the meaning of the vibration
amplitudes and the phases, respectively.
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Substituting relationships (31) into solvability conditions (25), (26) and (29),
and then separating real and imaginary parts leads to the modulation equations of
amplitudes and phases

da1

dτ
� −1

2
c1a1,

dψ1

dτ
� 3

2
ξ 2

r α, (32)

da2

dτ
� −1

2
c2a2,

dψ2

dτ
� s w2w2

3

2
(
w2

2 − w2
3

) , (33)

da3

dτ
� −1

2
c3a3,

dψ3

dτ
� sw5

3

2w2
2

(
w2

2 − w2
3

) . (34)

Equations (32)–(34) are written after returning to the original denotations according
to (15) and (31). The initial conditions supplementing the set (32)–(34) are

a1(0) � a10, ψ1(0) � ψ10, a2(0) � a20, ψ2(0) � ψ20, a3(0) � a30, ψ3(0) � ψ30.

(35)

The sets of initial conditions (11) and (35) must be agreed one to another using the
final analytical form of the solution.

Solution to the modulation Eqs. (32)–(34) follows

a1 � a10e−c1 τ/2, ψ1 � 3

2
ξ 2

r ατ + ψ10 (36)

a2 � a20e−c2 τ/2, ψ2 � s w2w2
3τ

2
(
w2

2 − w2
3

) + ψ20, (37)

a3 � a30e−c3 τ/2, ψ3 � − s w5
3τ

2w2
2

(
w2

2 − w2
3

) + ψ30. (38)

Finally, expressing the complex-valued functions Bi (τ1) by the real-valued func-
tions ai (τ1), ψi (τ1) according to (31) and then substituting (36)–(38) into solutions
(22)–(24), (27), (28) and (30), one can obtain the approximate solution to the original
problem (7)–(9) with (11). The solution has the following analytical form

ξ � a1 cos(τ + ψ1) − f1 cos(p1τ )

p2
1 − 1

+
1

4
w2

2a2
2 +

3w2
2a2

2 cos(2w2τ + 2ψ2)

4(2w2 − 1)(2w2 + 1)
(39)

ϕ � a2 cos(w2τ + ψ2) − f2 cos(p2τ )

p2
2 − w2

2

+
sw2

3a3 cos(w3τ + ψ3)

w2
2 − w2

3

−
w2a1a2

(
(3w2 + 2 − 2w2

2) cos(τ − w2τ + ψ1 − ψ2) + (3w2 − 2 + 2w2
2) cos(τ + w2τ + ψ1 + ψ2)

)

2(4w2
2 − 1)

(40)
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γ � a3 cos(w2τ + ψ2) − f3 cos(p3τ)

p2
3 − w2

3

+
p2

2w2
3 f2 cos(p2τ)

w2
2

(
p2

2 − w2
2

)(
p2

2 − w2
3

) +
s w6

3a2 cos(w2τ + ψ2)

(w2 − w3)3(w2 + w3)3

+
w2

3

(
−1 + 2w3

2 + w4
2 − w2

2w2
3 − 2w2

(
1 + w2

3

))
a1a2 cos(τ + w2τ + ψ1 + ψ2)

2(1 + 2w2)(w2 − w3)(1 + w2 − w3)(w2 + w3)(1 + w2 + w3)

−
w2

3

(
−1 + 2w2 − 2w3

2 + w4
2 − w2

2w2
3 + 2w2w2

3

)
a1a2 cos(τ − w2τ + ψ1 − ψ2)

2(1 + 2w2)(w2 − w3)(1 + w2 − w3)(w2 + w3)(1 + w2 + w3)

− w2
3a1a3 cos(τ − w3τ + ψ1 − ψ3)

2w2
2(1 − 2w3)

+
w2

3a1a3 cos(τ + w3τ + ψ1 + ψ3)

2w2
2(1 + 2w3)

− w2
3a2 cos(w2τ + ψ2)

(w2 − w3)(w2 + w3)
(41)

As is earlier mentioned, the solutions (39)–(41) are valid only for non-resonant
vibration. If the system is close to any of resonance cases then singularities appear
in the analytical solution since some of the denominators in (39)–(41) tend to zero.

The correctness of the solution (39)–(41) is confirmed by numerical solution of
the original problem (7)–(9) and (11) obtained using the functions of Mathematica
software. The example of time histories of the system oscillations involving the
strong influence of the initial conditions are presented in Fig. 2. Parameters fixed in
calculations are as follows:

10 20 30 40 50

0.04

0.02

0.02

0.04

z

20 40 60 80 100

0.04

0.02

0.02

0.04

20 40 60 80 100

0.005

0.005

Fig. 2 Time history of vibration; solid curve—analytical solution, dashed curve—numerical solu-
tion

α = 2.25, f 2 = 0.01, f 3 = 0.002, f 1 = 0.05, c1 = 0.001,
c2 = 0.001, c3 = 0.001, w2 = 0.32, w3 = 0.09, p1 = 2.3, p2 = 1.28, p3 = 1.18,
e = 0.3, a10 = 0.04, a20 = 0.04, a30 = 0.004, ψ10 = 0.0, ψ20 = 0.0, ψ30 = 0.0.

Figure 2 consists of three parts. Each of them present two solutions related to
general coordinate z(τ ), ϕ(τ ) and γ (τ ), (from left to right, respectively). These
solutions are obtained in two ways as analytical solutions (39)–(41) using MSM and
by numerical integration of the original equations.

5 Resonant Vibration

Let us consider the case of the three primary main resonances, induced by the triple
external loading, occurring simultaneously i.e. 1≈p1, w2 ≈p2, and w3 ≈p3. The
resonance effects are reflected in the secular generating terms. In order to deal with
the resonance, the detuning parameters, as a measure of the distance of the system
vibration from the strict resonance conditions, are introduced in the following way
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p1 � 1 + σ1, p2 � w2 + σ2,p3 � w3 + σ3. (42)

We assume the detuning parameters are of the order of small parameter, i.e. we take

σi � εσ̃i i � 1, 2, 3. (43)

The conditions (42)–(43) are introduced into Eqs. (7)–(9). Further procedure is anal-
ogous to this one described in the two previous sections. Therefore, we focus mainly
on the secular terms generated by the resonance conditions (42). As a result of elim-
ination of these secular terms we get the solvability conditions of the problem. They
may be written as follows

2i
d B1

dτ1
+ 3B1α̃ ξ 2

r + ic̃1 B1 − 1

2
ei τ1σ1 f̃1 � 0, (44)

2iw2
d B2

dτ1
+ ic̃2w2 B2 +

w2
2w2

3

w2
2 − w2

3

s̃ B2 − 1

2
ei τ1σ2 f̃2 � 0, (45)

−iw3 B3c̃3 +
w6

3 s̃ B3

w2
2

(
w2

2 − w2
3

) − 2iw3
d B3

dτ1
+

1

2
ei τ1σ3 f̃3 � 0. (46)

5.1 Modulation Problem Near Resonances

The solvability conditions (44)–(46) create a system of the ordinary differential
equations with respect to unknown functions B1(τ1), B̄1(τ1), B2(τ1), B̄2(τ1), B3(τ1),
B̄3(τ1). After introducing the exponential form (31) for the complex-valued functions
Bi (τ1), it is convenient to define the modified phases in the following way

θ1(τ1) � τ1σ̃1 − ψ1(τ1),

θ2(τ1) � τ1σ̃2 − ψ2(τ1),

θ3(τ1) � τ1σ̃3 − ψ3(τ1).

(47)

After substitution the modified phases (47) into solvability conditions (44)–(46) and
having returned to the original denotations according to (14)–(15), (31) and (43), the
obtained modulation equations become autonomous of the following form

da1

dτ
� −1

2
a1c1 +

f1

2
sin(θ1), (48)

dθ1

dτ
a1 � a1σ1 − 3

2
ξ 2

r αa1 +
f1

2
cos(θ1), (49)

da2

dτ
� −1

2
c2a2 +

f2

2w2
sin(θ2), (50)

dθ2

dτ
a2 � σ2a2 − s w2w2

3a2

2
(
w2

2 − w2
3

) +
f2

w2
cos(θ2), (51)
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Fig. 3 Temporal behaviour of amplitudes and modified phases which tend to steady point

da3

dτ
� −1

2
c3a3 +

f3

2w3
sin(θ3), (52)

dθ3

dτ
a3 � σ3a3 +

s w5
3a3

2w2
2

(
w2

2 − w2
3

) +
f3

w3
cos(θ3). (53)

In contrary to the previously discussed case of the non-resonant vibration, the
modulation Eqs. (48)–(53) cannot be solved in the analytical manner.

The initial conditions supplementing the set (48)–(53) are as follows

a1(0) � a10, ψ1(0) � ψ10, a2(0) � a20, ψ2(0) � ψ20, a3(0) � a30, ψ3(0) � ψ30,

(54)

and must be compatible with the initial conditions (11).
The modulation curves describe the slow time changes in the motion. For some

conditions vibration tends to the steady values of the amplitudes and phases. This
case is presented in Fig. 3. The assumed parameters are:

σ 1 = 0.01, σ 2 = 0.01, σ 3 = 0.01, w2 = 0.293, w3 = 0.055, s = 0.02, f 1 = 0.00025,
f 2 = 0.00005, f 3 = 0.00005, c1 = 0.00223, c2 = 0.0031, c3 = 0.003, α = 0.2,
a10 = 0.01, a20 = 0.01, a30 = 0.01, ψ10 = 0, ψ20 = 0, ψ30 = 0 .

Equations (48)–(53) describe effects related to the slow time scale. They allow to
observe and follow non-steady oscillations, and to recognize and follow qualitative
transitions in the character of motion. A good way of illustration of the dynamical
behaviour of the system are trajectories depicted in a space the points of which are
amplitudes and modified phases, and so the functions connected to the modulation
equations. The projections of the trajectories onto the chosen planes of this space are
shown in Fig. 4. The simulations are carried out for the same data as previously.

After the transient state, all trajectories achieve the stable steady state, although
the duration of the transient vibration is various for the particular general coordinates.
The steady state conditions correspond to the demand of vanish of time derivatives
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Fig. 4 Trajectories of motion in the amplitude-modified plane; red points indicate stable state

of amplitudes and modified phases in modulation Eqs. (48)–(53). They are governed
by the following equations

−1

2
a1c1 +

f1

2
sin(θ1) � 0, (55)

a1σ1 − 3

2
ξ 2

r αa1 +
f1

2
cos(θ1) � 0, (56)

−1

2
c2a2 +

f2

2w2
sin(θ2) � 0, (57)

σ2a2 − s w2w2
3a2

2
(
w2

2 − w2
3

) +
f2

w2
cos(θ2) � 0, (58)

−1

2
c3a3 +

f3

2w3
sin(θ3) � 0, (59)

σ3a3 +
s w5

3a3

2w2
2

(
w2

2 − w2
3

) +
f3

w3
cos(θ3) � 0. (60)

Equations (55)–(60) stand for algebraic system with unknown values of amplitudes
and modified phases a1, a2, a3, θ1, θ2 and θ3 in steady-state motion.

The fully explicit form of the approximate solution of the original problem in case
of the resonance is usually impossible to achieve. The modulation equations due to
their complexity are solved in numerical manner. Having however the solutions of the
governing equations in the analytic form of functions of amplitudes and phases (or
modified phases), we can substitute the numerical solutions into this analytical form.
Time histories obtained in this way with comparison to the numerically obtained
solutions are presented in Fig. 5. The results presented in Fig. 5 are obtained for
the same values of system parameters as the ones listed above and demonstrated in
Figs. 3 and 4.
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Fig. 5 Time histories; upper graphs are obtained analytically while the lower ones numerically

6 Conclusions

The approximate solution to the governing equations has been obtained using the
multi scales method with two time scales. The analytical form of this solution is
the main advantage of the applied approach, giving the possibility to the qualitative
and quantitative study of the system dynamics in a wide range of the frequency
spectrum. The approximate solution for non-resonant vibration has been obtained in
fully analytical form because the modulation equations governing the evolution of
amplitudes and phases in the slow time scale were solved analytically. Admittedly an
approximate but however analytical form of this solution create, among others, the
possibility to determine the conditions at which the resonances occur. The adequate
conditions for possible resonances have been detected. The case of three primary
main resonances occurring simultaneously has been considered.
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nonlinear vibrations of the 3-dof pendulum. Differ. Equ. Dyn. Syst. 21(1&2), 123–140 (2013)

2. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Resonances in kinematically driven
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