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Abstract: Resonant sensors basing on microstructures and belonging to 
microelectromechanical systems (MEMS) have been developed in recent years. The 
paper deals with dynamics of micro-gyroscope being a sensor designed for measuring 
the angular displacement. Such device is used for the attitude control of a moving 
object. Vibration of the basic measuring element suspended on a set of two pivoted 
and mutually orthogonal axes is the object of our study. One coordinate of the angular 
velocity of the support can be measured by the MEMS system. Since a resonance 
phenomenon is the desirable state of work of this sensor, the elastic properties of the 
support should be appropriately designed. Therefore, it is important to consider also 
the nonlinear behaviour of the system. It is assumed that the elastic features of the 
sensor suspension are weakly nonlinear. The equations of motion of the 
micromechanical sensor have been derived using the Lagrange formalism. The 
approximated solutions obtained using multiple scales method allow to investigate the 
resonant behaviour of the system. 

1. Introduction 

Gyroscopes are present in a broad range of engineering systems such as air vehicles, automobiles, and 

satellites to track their orientation and control their path. Besides the directional gyroscopes there are 

variety kinds of gyroscopes (e.g. mechanical, optical and vibrating) that are being used to measuring 

the angular velocity. The critical part of the conventional mechanical gyroscope is a wheel spinning at 

a high speed. Therefore, conventional gyroscopes although accurate are bulky and very expensive and 

they are applicable mainly in the navigation systems of large vehicles, such as ships, airplanes, 

spacecrafts, etc.  

Progress in micromachining technology embraces the development of the miniaturized 

gyroscopes with improved performance and low power consumption that allow the integration with 

electronic circuits. Their manufacturing cost are also significantly lower [1–2]. Such type of 

gyroscopes belongs to broad class of  microelectromechanical systems (MEMS). Practically, any 

device fabricated using photo-lithography based techniques with micrometer scale features that 

utilizes both electrical and mechanical functions could be considered as MEMS.  

The operating principle of  vibrating gyroscopes is based on the transfer of the mechanical 

energy among two vibrations modes via the Coriolis effect which occurs in the presence of 
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a combination of rotational motions about two orthogonal axes. The drive mode is mainly generated 

employing the electrostatic actuation mechanism.  

In the present work, we conduct an analysis of dynamics of a MEMS gyroscope. This micro 

device is a torsional resonator. Resonance is the desirable state of work of this sensor, so the elastic 

properties should be appropriately matched. Designing the resonator, only linear elasticity is taken 

into account. There arises the question what is the significance of the nonlinear properties of resilient 

resonator elements. Therefore, we propose the mathematical model describing motion of the MEMS 

gyroscope taking into account the nonlinear effects generated by the elastic properties of the 

suspension elements. The main objective of the paper is to obtain and to examine the resonant 

responses of the considered system. 

2. Description of micromechanical gyroscope  

MEMS gyroscope, whose scheme is presented in Fig. 1, with the sensing plate suspended on a set of 

two pivoted and mutually orthogonal axes is studied. The active gimbal is supported by two torsional 

connectors that are anchored to the substrate and designate the drive axis, so that the gimbal oscillates 

only about this axis. The sensing plate is linked to the gimbal via two torsional joints determining the 

sense axis and allowing to oscillate about this axis independent from the gimbal position. Both the 

sensing plate and the gimbal are treated further as rigid bodies.  

Figure 1.  Micromechanical gyroscope suspended on a set of two pivoted and mutually orthogonal 

pivot axes; 1 – anchor, 2 – gimbal, 3 – sensing plate. 

The kinematics of the gyroscope is best to understand by introducing three reference frames 

shown in Fig. 2. They have the common origin at the point O. In the frame F0 with the coordinate 

system Ox0y0z0 the anchors are motionless. The frame F1 with the coordinate system Ox1y1z1 is fixed 

to the intermediate pivoted support, whereas the frame F in which it is assumed the coordinate system

Oxyz is rigid connected with the sensing plate. The frame F1 which can oscillate about the drive axis 

z
0

y
0

1

2
3 1

x
0

512



x0 is presented in position rotated by � counterclockwise, and the frame F oscillating around 

the sense axis y1 is shown in position being a result of the rotation by �, also counterclockwise. 

The substrate, in general, can rotate about a fixed pivot axis. Let as assume that its angular 

velocity �z projected on the axes of the frame F0 is T
zz ],0,0[ Ω=�  where �z is to be measured. 

The absolute gimbal angular velocity �1 is a superposition of the substrate rotation and own 

rotation about the drive axis. Projecting it onto the axes of the frame F1, we obtain  

[ ]Tzz ΦΩΦΩΦ= cos,sin,1� . (1) 

The absolute angular velocity � of the sensing plate written in the reference frame F and being a 

result of the substrate motion, gimbal rotation and own rotation about y-axis is 

[ ]Tzzz ΘΦ+ΘΦΩΘ+ΦΩΦΘ+ΘΦΩ−= sincoscos,sin,cossincos� . (2) 

  

Figure 2.  The angles of rotation � and �: (a) the rotation of F1 by � about x0-axis; (b) The rotation of 

F2 by � around y1. 

3. Equations of motion 

The considered microsystem has two degrees of freedom in motion with respect to the substrate. The 

rotation angles �(t) and �(t) are assumed to be the general coordinates. The point O that is the mass 

center both of the sensing plate and the gimbal is constantly at rest. The axes of reference frames F1

and F are the principal axes of inertia of the gimbal and the plate, respectively. Therefore, the inertia 

tensors of each of the gyroscope part related to these axes are of diagonal form independent of the 

current system configuration. Let yx II , and Iz  denote moments of inertia of the gimbal about its 

principal inertia axes x1, y1 and z1, whereas Jx, Jy and Jz stands for the principal moments of inertia of 

the senor plate i.e. with respect to the axes x, y and z. In other words, the inertia tensors of both 

gyroscope parts we can write as  ),,(ˆ
zyx IIIdiag=I and ),,(ˆ

zyx JJJdiag=J .  

The kinetic energy of the system is a sum of two quadratic forms 
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( )�J��I� T .ˆ..ˆ.
2

1
11 += TT . (3) 

Substituting formulas (1) and (2) into equation (3), we get 

( )

( ) ( ) ( )( )
2 2 2 2 2

22 2

1
(cos ) (sin )

2
1

cos sin cos cos cos sin sin .
2

z z y z x

x z z z y z

T I I I

J J J

= Ω Φ + Ω Φ + Θ +

Ω Φ Θ − Φ Θ + Ω Φ Θ + Φ Θ + Ω Φ + Θ

(4) 

Taking into account that the system mass center O is immovable and assuming that the elastic 

properties of all torsional connectors are nonlinear of cubic type, we can write the potential energy as 

follows 

2 4 2 4
11 12 21 22

1 1 1 1
,

2 4 2 4
V k k k k= Φ − Φ + Θ − Θ (5) 

where k11, k12 and k21, k22 are elastic coefficients of the outer and the inner torsional connectors 

respectively. 

The viscous effects of gas, which is confined between the rotating surfaces and the immovable 

ones, play the primary role in damping mechanism. The system is excited by the driving electrostatic 

torque M0 sin(P t) applied to the drive gimbal. 

The governing equations have been derived using Lagrange’s equations of the second kind. Due 

to expected small values of angles � and �, we assume linear approximation of the trigonometric 

functions, whose arguments are these angles, making the  equations of motion simpler of the 

following form 

3 2
11 12 1

0

( ) ( ) ( )

2( ) sin( ),

x x z y z y z x y z z

z x

I J k k C I I J J J J J

J J M P t

+ Φ + Φ − Φ + Φ + − + − Ω Φ − + − Ω Θ +

− ΘΘΦ =
 (6) 

3 2 2
21 22 2

2

( ) ( ) ( )

( ) 0,

y z x z x y z z z x z

x z

J k k C J J J J J J J

J J

Θ + Θ − Θ + Θ + − Ω Θ + + − Ω Φ + − Ω Θ Φ +

− ΘΦ =
 (7) 

where C1 and C2 are the damping coefficients. 

It is convenient to transform the governing equations into the nondimensional form. For this 

purpose we introduce the dimensionless time 1ωτ t= and the following dimensionless  parameters: 

1ω
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22
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yJ

k= , 
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yyzz
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JIJI
j

+
−−+

=1 , 
xx

yxz

JI

JJJ
j

+
−−

=2 , 
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zxy

J

JJJ
j

−+
=3 , (8) 

xx

xz

JI

JJ
j

+
−

=
22

4 , 
2

1

2
22

ω
ω

=w , 

where 
xx JI

k

+
= 11

1ω ,  
yJ

k21
2 =ω . 

The dimensionless form of the governing equations takes the following form 

( ) ( )2 3
1 1 1 2 4 01 sin ,z zj c j j f pφ ω φ α φ φ ω ϑ ϑϑφ τ+ + − + + + = (9) 

( )( ) ( ) ( ) 0111 3
2

3
2

32
3

2
2

3
2 =+−+−++−−++ ϕωϕϑϕϑωϑϑαϑωϑ zzz jjjcjw , (10) 

where functions )(),( τϑτϕ correspond to the dimensional general coordinates �(t) and �(t). 

Equations (9) and (10) are supplemented with the proper initial conditions 

0000 )0(,)0(,)0(,)0( ϖϑϑϑωϕϕϕ ==== . (11) 

From the viewpoint of the gyroscope applications, the main resonance is the most important state 

of its work. Ideally, it is desired to utilize resonance in both the drive and the sense modes in order to 

attain the maximum possible response gain and sensitivity. This is typically achieved by properly 

designing and if needed tuning the resonant frequencies of the drive and the sense in order to their 

equalizing. This is why we have assumed that 12 ωω = (i.e. w=1). Angular velocity of the substrate 

zω is usually much lower than angular frequencies of the movable gyroscope elements. Therefore, in 

order to deal with this case of the resonance we take  

σ+=1p , (12) 

where σ  plays a role of the detuning parameter. 

4. Approximate analytical solution 

The method of multiple scales (MSM) has been used to solve of the problem (9) – (11) taking into 

account the main resonance condition. Since a few of the parameters are assumed to be small, after 

introduction of the so-called small/perturbation parameter ε  the following relations are employed: 

23
00

2
22

2
11

~,
~

,~,~,~ εσσεεεε ===== ffwwcccc zz . (13) 
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According to MSM, three time scales are introduced that are defined in the following manner: 

ττ =0  is the “fast” time, whereas εττ =1  and τετ 2
2 =  serve as the “slow” times [3]. 

The derivatives with respect to time � are calculated in terms of the new time scales as follows  
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(14) 

The solution of the initial-value problem (9) – (11) is searched in the form of the power series 

regarding the small parameter ε : 

( ) ( )�
=

=

+=
3

1

4
210 )(,,;

k

k
k

k O ετττφεετϕ ,     ( ) ( )�
=

=

+=
3

1

4
210 )(,,;

k

k
k

k O ετττθεετϑ . (15) 

Then, relations (13) – (14) are introduced into equations of motion (9) - (10). In this way, 
the small parameter appears in the mathematical model. After rearranging the equations with respect 
to the powers of the small parameter, we get a system of equations which are to be satisfied in order 
to guarantee satisfaction to the original equations. They are as follows:  

- the equations of the first order approximation  

,012
0

1
2

=+
∂
∂ φ

τ
φ (16) 

2
1

12
0

0;θ θ
τ

∂ + =
∂

(17) 

- the equations of the second order approximation  

2 2
2 1

22
0 0 1

2 ,ϕ ϕϕ
τ τ τ

∂ ∂+ = −
∂ ∂ ∂

(18) 

2 2
2 1

22
0 0 1

2 ;θ θθ
τ τ τ

∂ ∂+ = −
∂ ∂ ∂

(19) 

- the equations of the third order approximation 

( )

2 2 2 2
33 1 2 1 1

3 1 1 12 2
0 0 2 0 1 1 0

1 1 1
4 1 2 0 0 2

0 0 0

2 2

sin ,z

c

j j f

ϕ ϕ ϕ ϕ ϕϕ α ϕ
τ τ τ τ τ τ τ

θ ϕ θθ ω τ τ σ
τ τ τ

∂ ∂ ∂ ∂ ∂+ = − − − + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂− + +
∂ ∂ ∂

(20) 
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2 2 2 2
33 1 2 1 1

3 2 1 22 2
0 0 2 0 1 1 0

2
1 1 1

3 1 3 1
0 0 0

2 2

.z

c

j j

θ θ θ θ θθ α θ
τ τ τ τ τ τ τ

ϕ ϕ ϕθ ω θ
τ τ τ

∂ ∂ ∂ ∂ ∂+ = − − − + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

� �∂ ∂ ∂− +� �∂ ∂ ∂� �

(21) 

System (16) – (21) is solved recursively, i.e. solution of equations (16) – (17) is substituted into 
equations (18) – (19), and then their solution into equations (20) – (21). The solution contains 
unknown complex functions ),( 211 ττB  and ),( 212 ττB . The values of generalized coordinates are to 

be bounded, therefore all secular terms should be eliminated what leads to conclusion  that )( 21 τB

and )( 22 τB  do not depend on the time scale 1τ  and satisfy the solvability condition: 

2

1
2211

2
10

~
11

2
214 2~~3

2
1~ 2

τ
ωαστ

d
dBiBjiBBfieciBBBj z

i =−+−−− , (22) 

( ) ( )
2

2
1322

2
2222

2
132113 2~3~112

τ
ωα

d
dBiBjiBBciBBBjBBBj z =−+−−+− . (23) 

The functions )( 21 τB  and )( 22 τB  can be determined from the solvability conditions (22) – (23), but 

it is more preferably to introduce their real representations as follows 

,
2

)(~
)(,

2
)(~

)( )(22
22

)(21
21

2221 τψτψ ττττ ii eaBeaB →→ (24) 

where 2211
~,~ aaaa εε ==  and 21 ,ψψ  are real-valued functions and denote amplitudes and phases of 

the general coordinates ϕ  and ϑ .  

After substituting (24) into (22) – (23) and separating real and imaginary parts, we obtain 
the modulation equations which can be transformed to more suitable autonomous form by introducing 
modified phases as follows 

( ) ( ) ( ) ( ) .~and~,~ 2
2222221221 σεστσττψτσττψ =Ψ−=Ψ−= (25) 

Substituting expressions (24) and (25) into the solvability conditions (22) – (23) and returning to 
the initial denotations according to (13), the modulation equations in autonomous form are obtained 

( )( ) ( ) ( ),sin
2
1sin

2
12cos

8
1

10212221
2
2141

1
1 Ψ+Ψ−Ψ+Ψ−Ψ−=

∂
Ψ∂ fajaajaa zωσ
τ

(26) 

( )( ) ( ) ( ),cos
2
1cos

2
12sin

8
1

2
1

10212221
2
21411

1 Ψ−Ψ−Ψ−Ψ−Ψ−−=
∂
∂ fajaajaca

zω
τ

 (27) 
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( ) ( )( ) ( ),sin
2
12cos1

8
1

8
3

4
1

2113212
2
13

3
222

2
1

3
2

2
2 Ψ−Ψ−Ψ−Ψ−++

−
+=

∂
Ψ∂ ajaajaaajaa zωασ
τ

 (28) 

( ) ( )( ).2sin
8

1cos
2
1

2
1

212
2
1

3
211322

2 Ψ−Ψ
−

+Ψ−Ψ−−=
∂
∂ aajajaca

zω
τ

(29) 

There is no possibility to solve analytically the modulation equations (26) – (29). The final form 
of the analytical solution of the original problem (9) – (11) is obtained after substituting solutions of 
equations (16) – (21) into power series (15):  

( ) ( )( ) ( )21
2
2141

3
1111 23cos

32
13cos

32
1cos ψψτψταψτϕ ++−+−+= aajaa , (30) 

( ) ( )( ) ( )212
2
1

3
2

3
2222 23cos

32
13cos

32
1cos ψψτψταψτϑ ++

−
++−+= aajaa , (31) 

where 1a , 2a , 1ψ  and 2ψ  satisfy modulation equations (26) – (29). 

Taking into account some special case of parameters discussed in [4], i.e. 04 =j , 12 −=j  and 

13 =j , the amplitude-frequency response functions are obtained analytically. They follow 

( ) 22
1

22
2

2
22

4
2

2
2

6
2 166416489 zwacaaa =+++ σσαα , (32) 

( ) ( )( )
( )( ) .168316

283163224982489
2

0
2
1

2
2

2
2

2
2

4
2

212
2
2

2
2

2
1

2
1

2
221

4
2

2
1

4
11

6
1

2
1

8
1

faaca

ccaaaaacaaa

=++

+−+−+−−++

σα

σασσσααασαα
 (33) 

The derived formulas (32) – (33) offer a well-judged analysis of the influence of parameters on 
the steady state vibration of the gyroscope sensing plate.  

5. Results 

Here are presented some exemplary graphs concerning motion of the gyroscope near resonance. 

Calculations are performed for the following fixed dimensionless parameters: 51064.6 −×=zω , 
7

0 1037.4 −×=f , 5
21 1098.3 −×== cc , 121 == αα , 16

1 106.1 −×−=j , 12 −=j , 13 =j , 04 =j . 

The latter correspond to values of real-world structure [4]. Time histories of the generalized 

coordinates ϕ  and ϑ , according to (30) – (31), are presented in Fig. 3. 
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Figure 3.  Time histories of the vibration. 

The thick black line in Fig. 3 describe amplitude modulation yielded by equations (26) – (29). 
It should be emphasized that the approximate analytical solution satisfies the governing equations (9) 
– (10) with a high accuracy (the absolute errors �1 and �2 are reported in Fig. 4). 

Figure 4.  Absolute errors exhibited by the governing equations for the approximate analytical 
solution. 

The employed analytical methodology and computational approach is suited to engineers dealing with 
MEMS. Namely, we have used the optimized numerical algorithm implemented in Wolfram 
MathematicaTM. However, in the latter case the error of satisfaction of the equation of motion is five 
orders of magnitude  larger in comparison to our described analytical solutions.  

The amplitude curves for steady state motion obtained with the help of eq. (32) – (33) are 
presented in Fig. 5 for the same data as before. 

Figure 5.  Amplitude of steady state vibration vs. detuning parameter: grey line – small damping 
5

21 102.2 −×== cc ; black line – large damping 5
21 100.4 −×== cc
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For small value of the damping coefficients several regimes of steady-state amplitudes are 
possible. On the other hand, for properly large damping coefficients, the amplitudes versus time 
create the unique functions. 

6. Conclusions 

The mathematical model describing dynamics of some class of micromechanical gyroscope has been 
derived and presented in dimensionless form. The approximate analytical solution of the governing 
equations has been obtained using multiple scale method in time domain in the case of main 
resonance. The analytical solution presented in compact form gives opportunity to study behavior of 
the system for wide range of parameters. The asymptotic solution is very accurate.  

The analytical form of the amplitude-frequency dependence allows to qualitative and quantitative 
analysis of the steady-state motion of the system. The results show, among others, that value of 
damping coefficients may violate uniqueness of the solution and influence the duration of 
the transient states. 
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