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Abstract: In this work both experimental and simulation results of a study of two 
physical pendulums coupled through an elastic torsional element are presented. 
Permanent magnets are attached to the pendulums ends and the system motion is 
forced by a variable magnetic field with a help of the exciting coils. The electric 
current signal possesses rectangular shape, and the experimental investigations have 
been carried out for different frequencies and amplitudes of the current signal 
(excitation). The derived mathematical model has been validated experimentally 
taking into account its experimentally confirmed parameters. The magnetic fields 
interactions have been reduced to the moment of a force based on the experimentally 
obtained data. A few of the dynamically different cases are studied including the 
elastically coupled/un-coupled pendulums and the system excitation carried out either 
by one or two pendulums. Regular and chaotic dynamics of this mechatronic system 
have been detected, illustrated and discussed. 

1. Introduction 

In classical mechanics a pendulum (physical or mathematical) is one of the simplest objects of  

one-degree-of-freedom system, whose motion is governed by a nonlinear differential equation. 

Technical progress and combination of different branches of technologies yielded possibilities for 

searching new methods of driving for mechanical systems, and the magnetic forces have recently 

attracted interest for their employment as the sources for mechanical/mechatronical excitations. It is 

well known and documented that even simple pendula driven by magnetic field may exhibit a rich 

dynamic behavior including periodic motions [1], parametric and self-excited oscillations [2], 

numerous parametric resonances [3], and chaotic behaviors [1, 3, 4]. 

In a series of papers [1-4] the magnetic field interaction has been simplified to the Gilbert model 

of magnetic dipole [5]. However, in contrary to the latter investigations the magnetic interaction in 

our work is expressed as mathematical function based on experimental data, in contrary to the 

mentioned theoretical model. 

2. Experimental rig and electric excitation signal 

Fig. 1 presents the setup of the constructed experimental stand. The test stand is equipped with two 

pendulums marked as (1) and (2). The pendulums are attached to the axes (3) which are hold by 

rolling bearings. The axes are joined with a cuboid elastic element (4) made of rubber. Pendulum (2) 
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always has a neodymium magnet (5) (not visible) at the end of the rod. In the case of the  

pendulum (1), the neodymium magnet can be replaced by a brass element with the same dimensions 

and mass as the mentioned magnet. Air-core coils (6) (0.022 H inductance) are located below the 

pendulums. Distance between the coil and the magnet during our experiment was equal to  

h=0.0016 m (it is possible to regulate this distance). On the axes are also attached wheels (7) used for 

measurement of static characteristics of the moment of force, that comes from the magnetic 

interaction. The experimental rig is made of non-magnetic materials like brass, aluminum or polymer 

composites to reduce its influence on the activated magnetic fields. 

Figure 1.  Experimental rig (1 – pendulum, 2 – pendulum, 3 – axis, 4 – elastic element, 5 – neodymium 

magnet, 6 – air-core coil, 7 – wheel). 

Fig. 2 shows a shape of the electric current signal which flows through the coils. The signal can 

flow through one coil or two coils at the same time. The frequency �� � �
��, duty cycle �� � �	

� 

���
� and amplitude are controlled. The ���� ��� denote the amplitudes of the current, where ��� and 

��� stand for the pendulum 1 and the pendulum 2, respectively. 

Figure 2.  Excitation current signal (�� – current ON; �� – current OFF; � � �� � ��  – period; 

� � �	
� 
 ���
 - duty cycle). 
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3. Mathematical model 

This section describes the mathematical model of the experimental rig presented in section 2. The 

physical model of the experimental rig is shown in Fig. 3. 

Figure 3.  Physical model of the experimental stand. 

The mathematical model is created accordingly to the laws of the classical mechanics. It has been 

developed considering the four torques acting on the each pendulum. General equations of motion of 

the pendulums are as follows 

����� � ����� � ��� ��� 
 !"#�� � $%&�� � ��', (1) 

���� � � ����� � �(� � �� 
 !"# �� � $%&�� � ��', (2) 

where: ��� �� – moments of inertia of the pendulums, ������ ����� – magnetic interaction torques, 

���� ��� – damping torques, �� – weight of the pendulum,   – length between center of mass of the 

pendulum and the axis of rotation, $%&�� � ��' – torsional deformation torque of elastic element, 

where $%  is a stiffness of the element. 

Torques ��� and ��� are sum of all damping factors which act on the pendulums during their 

motions, i.e. we have the 
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��� � )��*� � )%&��* � ��* ' � )+� 
  �,&��* ' , 
��� � )��* � � )%&��* � ��* ' � )+� 
  �,&��* ' , (3) 

where: )��*�� )��* � – the viscous torques, )%&��* � ��* ', )%&��* � ��* ' are the damping torques of the 

elastic element, )+� 
  �,&��* '� )+� 
  �,&��* ' – friction torques of the bearings ()�� )�� )%� )+�� )+� are 

constant coefficients). 

Torques ����� and ����� define the magnetic interaction between a coil and a magnet. This 

interaction depends on the excitation current signal (see Fig. 2) and the moment of magnetic forces: 

����� � -���� 
  �,&��', 

����� � -���� 
  �,&��'. (4) 

During experiments, we observed an interesting phenomenon of a mutual excitation/synchronization 

of the magnets. When two pendulums are uncoupled and both equipped with the magnets, the 

magnetic fields of the magnets interact and create some “kind of connection” between the pendulums. 

Fig. 4 shows this phenomenon for a free swing of pendulum 2. 

Figure 4.  Interaction between pendulums with magnets. 

It should be mentioned that though this phenomenon has been demonstrated experimentally, but 

it requires further experiments and simulations with two pendulums equipped with magnets due to 

lack of theoretical model of that interaction. This is why in this study we replaced the magnet in 

pendulum (1) with the brass element (in Eq. 1 we take ����� � �). 

The terms -���� and -���� represent the static characteristics of the magnetic forces reduced to the 

moment of force. The characteristics have been measured for pendulum 2. The way of measuring is 

schematically shown in Fig. 5. 
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Figure 5.  Method of measurement of the static characteristics of the magnetic forces. 

The beam with strain gauge moves downward vertically with a constant velocity. The force F

and the angle ϕ2 are registered and processed by Eq. 5 to achieve 

-���� � . 
 �� � �� 
 !"#/ ��, (5) 

where: . – measured force, 0 – diameter of the wheel. 

The measurements have been carried out for two constant values of the coil current: ��� � �/1 and 

��� � �23/1. The obtained measurement points are shown in Fig. 6. Particular attention must be paid 

to the non-zero values of -���� for a zero angle achieved during the experiment. Though the fitted 

function should be multivalued for zero angle, however during modeling we have made an 

assumption that the moment of force is zero for zero angle because there is no moment arm. The 

experimental non-zero values of -���� for zero angle is yielded by not high enough resolution of the 

angle sensor. 

Figure 6.  Experimental sets of points regarding the moment -����
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The obtained set of experimental points can be approximated by the following analytical formula 

-���� � 4 
 !5#&6' 
 789 :� �;<=&>'
>?@
A ��B /, (8) 

where C, D, ) are constant parameters being different for each possible values of the current. 

It should be explained that the parameters C, D, ) appeared in Eq. 8 influence -����. Namely, 

the parameter C is responsible for extreme value of the function (8) for positive angles, whereas &�D'
is the argument for its extremum and ) is responsible of its shape. For the negative angles, the values 

of -���� are symmetrical with respect to the positive angles. The fitted functions and symbolically 

illustrated a and &�D' parameters are shown in Fig. 7. 

Figure 7.  Experimental data versus the analytically approximated functions of the moment -����. 

4. Experiments versus numerical simulations 

This section is aimed on the theoretical and experimental validation of the existence of regular and 

chaotic dynamics of our mechatronic system. Equations of motion (Eq. 1, 2) are solved numerically 

using the WOLFRAM MATHEMATICA software. For the purpose of effective simulations signum 

functions in Eqs. 3, 4 and 8 are replaced by 
�
E 4FGH4#&I 
 J', where I is large parameter [6]. That 

replacement causes that redefined functions and their first derivatives are continuous. The following 

parameters are fixed: I � ��K, �� � L2M�N3 
 ��OP/$���, �� � L2Q��� 
 ��OP/$���, �� �
�2�3QM/R�/, $% � N23SN 
 ��OP/RT�//, )� � S2� 
 ��OU/R� , )� � Q2N 
 ��OUR� , )% � �S2QSL 

��OUR� , )+� � NQ23NS 
 ��OUR�, )+� � NQ2MMM 
 ��OUR�, ��� � �1 V C � �2NMQLMW� D �
��2��Q�MN� ) � ��2�X33W�, ��� � �231 V C � �2WSXXNN� D � ��2�XN33Q� ) � ��2��NWNN. 

Fig. 8a shows simulation and experimental results of the free vibrations of uncoupled pendulums 

for the following initial conditions: ��&�' � ��23L/YCZ/&�MX2SM[', ��&�' � ��2�N3/YCZ/&��2WS[', 
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�*�&�' � � \�]
^  and �* �&�' � � \�]

^ . Fig. 8b presents time histories of the numerically and 

experimentally obtained time histories of the excited coupled pendulums, where ��� � �1�/
/� � N/_`� � � N3
. Initial conditions for simulations of the excited coupled pendulums are as 

follows: ��&�' � �/YCZ, ��&�' � �2Q3 
 ��OU/YCZ/&�2���[', �*�&�' � �/YCZT  and �* �&�' �
�/YCZT . 

Figure 8.  Comparison of simulation and experimental results: a) coupled pendulums – free vibrations, 

b) coupled pendulums with magnetically excited pendulum (2) (��� � �1� � � N/_`�� � N3
). 

In the case of regular vibrations, after omitting the transitional process, the coincidence of the 

numerical and experimental results is clearly visible. 

However, the investigated system is very sensitive to small changes of the parameters like the 

duty cycle w and amplitude of the current. We have investigated the system experimentally for three 

different values of the duty cycle �: 27%, 30% and 33% when the current ��� � �1. We have also 

carried out the experiments for three amplitudes of the current ���: 0.5 A, 1 A, 1.5 A when the duty 

cycle/� � S�
. The results of the experiments are shown in the Fig. 9 in the form of bifurcation 

diagrams. The diagrams are made for increasing (�) frequency in a range 3.4-6 Hz. The system 

response for changes of the duty cycle plays a key role here. Taking into account Fig. 9a2 as a point of 

reference, one can say that a 3% increase in duty cycle results in significant reduction of chaotic area 

(represented by clusters of points) while preserving the period-2 motion. The 3% decrease in duty 

cycle leads to transition of period-2 motion into period-6 motion of the system. The influence of the 

a) 

b) 
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current changes is very similar to influence of the duty cycle. As it is seen in Fig. 9a1 and 9b1, the 

system motion type is similar and the frequency ranges are located closed to each other. Similarity of 

behavior has been also detected for the case of different current amplitude ��� � �23/1  

(Fig. 9b3) and ��� � �/1 (Fig. 9a3). 

Figure 9.  Experimental bifurcation diagrams for increasing frequency: 

different duty cycles w for the current ��� � �a (a1, a2, a3); 

different amplitudes of the current for the duty cycle � � S�
 (b1, b2, b3). 

Owing to the rich dynamics of the system responses we have chosen constant values of the 

current and duty cycle for a more detailed investigation of the motion. During our observations we 

have decided that parameters values ��� � �1 and � � S�
 are optimal for thermal conditions of the 

coil. Our detailed investigation has been started by creating the bifurcation diagrams using numerical 

a1) b1) 

a2) 

a3) 

b2) 

b3) 
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simulations and then verifying them experimentally. The frequency range during simulation and 

experiment was 1.5-6 Hz. Experimental diagrams were done for linear increasing or decreasing 

frequency with average velocity �2�N b�
�cd. Figure 10 shows simulation and experiment results for 

pendulum 2 and for both frequency paths: increase (Fig. 10a, b) and decrease (Fig.10c, d). The 

simulation and experiment bifurcation diagrams coincide though the motion regions are slightly 

shifted. Differences between simulation and experiment diagrams can be explained by not sufficiently 

slow velocity of the frequency during the carried out experiment and by the discrepancies between 

model of the magnetic interaction and investigated approximation curve. 

Figure 10.  Experimental (laboratory) versus the numerically estimated bifurcation diagrams for the 

pendulum 2 (��� � �/1� � � S�
'. 
We can see that direction of frequency path causes that some regions are mutually exclusive, and 

existence of regular dynamics in a region excludes chaotic behavior. At the same time, character of 

motion is the same for both pendulums. The system exhibits a few different types of regular motion 
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b)

c)

d)
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(examples labeled in Fig. 10): period-1 (re1, le1), period-2 (re2, re’2, le2) and period-6 (rs6, ls6). The 
period-1 motion has two stable states for positive and negative angles (we can see that in both 
experimental and simulation bifurcation diagrams). The period-6 motion is not visible in experimental 
diagrams, however we have validated this character of motion after set the constant frequency 
on 5.1 Hz. Fig. 11 presents simulation and experimental results of the phase plane plots with the 
Poincaré sections for period-6 motion. 

Figure 11.  Phase plots with Poincaré sections for 5.1 Hz. 

Period-1 and period-2 motions are confirmed by the phase 2D plots and the associated Poincaré maps, 
as shown in Figures 12, 13.  

Figure 12.  Phase plots with Poincaré sections of period-1 motion for 3 Hz. 

Figure 13.  Phase plots with Poincaré sections of period-2 motion for 2.75 Hz 
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In particular, the sensitivity of the system on the initial conditions yields interesting results for 
region labeled rsq (Fig. 10a) and corresponding to it region req (Fig. 10b). For earlier studied reasons, 
the above mentioned regions are shifted relative to each other. Therefore, for further investigations we 
take the fixed frequencies 2.17 Hz and 2.25 Hz corresponding to the middles of rsq and req regions, 
respectively. Though in simulation we have achieved three different responses, but only one of them 
has been validated experimentally (see Fig. 14). Two of them are periodic: period-6 motion which has 
been observed during experiment (Fig. 14a), period-2 motion (Fig. 14b), whereas the third response 
presents quasi-periodic orbit (Fig. 14c). The employed initial conditions are as follows: period-2 �
��&�' � �2���3N/YCZ/&/�2�S/[', ��&�' � �/YCZ� �*� � �* � � �/YCZT , period-6 � ��&�' �
�2���N/YCZ/&�2�Q/[', ��&�' � �/YCZ� �*� � �* � � �/YCZT , quasi-periodicity � ��&�' � �2QW 

��OU/YCZ/&/�2���/[', ��&�' � �/YCZ� �*� � �* � � �/YCZT . 

a) 

b) c) 

Figure 14.  Phase portraits with Poincaré sections for the region rsq and the corresponding req for 
different initial conditions: a) period-6 motion; b) period-2 motion; c) quasi-periodic motion.

5. Conclusion 

The studied system of two pendulums coupled elastically and driven by the magnetic field exhibited 
rich non-linear dynamical behaviour. We have found numerically and proved experimentally the 
existence of regular and chaotic motion of the system. We have constructed the bifurcation diagrams, 
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phase portraits with Poincaré sections by using numerical simulations, and we have validated them 
experimentally. The simulation results show good agreement with the experimental results. We can 
observe sensitivity of the system to initial conditions and different values of the control parameters 
(frequency, amplitude of coil current, duty cycle). Our physical model may serve as a good starting 
point for modelling of electric motors like steeper motors, which have flexible shaft or are joined 
through an elastic clutch. It should be mentioned that the influence of control parameters to the 
system behaviour is not fully examined in this paper, and it stands for further studies. Furthermore, 
the mathematical model of magnetic interaction also requires a detailed study. 
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