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Abstract: The mathematical model of a two-layer beam set taking into account the 

geometric nonlinearity on the basis of well-known kinematic hypotheses of the first 

(Euler-Bernoulli), the second (Timoshenko) and the third approximations (Reddy-

Pelekh-Sheremetyev) is presented. We show also that it is possible to construct 

mathematical models, when each layer is described by its own hypothesis. Three 

problems are addressed. Problem 1 - each of beams is described by the first 

approximation of the kinematic hypothesis. Problem 2 - each of the beams is 

described by the second approximation. Problem 3 - each of the beams is described by 

the third approximation. An external spatially distributed harmonic load acts on the 

beam package. The lamination of the beam structure along the entire length can occur. 

The stratification will lead to a change in the design algorithm scheme. In order to get 

reliable results, it is necessary to solve the problem taking into account two types of 

nonlinearity, i.e. geometric and constructive ones. A lot of attention in the work is 

paid to the reliability of the results. The methods for calculating such systems as 

systems with an infinite number of degrees of freedom have been developed. The 

convergence of the finite differences method is studied and the convergence of 

Runge-Kutta type methods is investigated. Furthermore, the value of the largest 

Lyapunov exponent employing three different algorithms (Wolf, Kantz and 

Rosenstein) is estimated. 

1. Introduction 

The aim of the work is to study the nonlinear dynamics of the contact interaction of flexible two-layer 

beams with a small clearance, described by the kinematic hypotheses of the first, second and third 

approximation. The influence of the inertial component and the theory of the curved normal on the 

nonlinear dynamics of the beam structure are investigated. It is necessary to determine what is new 

accounting for deformations associated with transverse forces, and allowance for the inertia of 

rotation in the non-linear dynamics of beam structures. On one of the beams (beam 1) is subjected to 

a distributed alternating load, the second beam, comes into motion due to contact with the beam 1. 

Owing to complexity of equations governing the non-linear dynamics of two geometrically non-

linear beams with a contact interaction, it is impossible to find an exact analytical solution. In general, 

the problem can be solved using numerical methods. However, the problem regarding reliability of 
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the obtained results is generated [1]. In many cases errors introduced by numerical computations are 

identified with chaotic vibrations. Consequently, it is extremely important to determine the truth of 

the chaotic vibrations that arise during the contact interaction of the beams. It is known that the 

fundamental characteristics of chaos is associated with sensitivity to the initial conditions.  

In this paper, we refer to Gulick [2] definition of chaos. Owing to the definition of chaos given 

by Gulick, chaotic orbits exist if there is either essential sensitivity to the initial conditions or at least 

one of the Lyapunov exponents is positive in each point of the considered chaotic domain.  

As initial conditions, we will assume: the kinematic hypotheses, the boundary and initial 

conditions, the number of intervals for integrating beams in the finite difference method, methods for 

solving the Cauchy problem in the form of Runge-Kutta methods, time step for solving dynamics 

problems.  

To reduce the infinite-dimensional problem to the Cauchy problem, we used the finite-difference 

method with approximation O(c2). The parameters of this method and the method itself are remain 

constant throughout the work. 

Well known are the theories of the beams bending, such as the Euler-Bernoulli theory [3] (first 

approximation), Timoshenko theory [4] (second approximation), Reddy-Pelekh-Sheremetyev theory 

[5, 6] (third approximation). 

In the scientific literature, one can find numerous works devoted to investigation of Euler-

Bernoulli [7], Timoshenko [8], Reddy-Pelekh-Sheremetyev [9] beams. But there are no papers 

devoted to the study of nonlinear dynamics and the contact interaction of beams. 

2. Formulation of the problem 

The considered structure composed of two beams occupies a 2D space within the R2 space with the 

rectangular system of coordinates given in the following way: a reference line, further called the 

middle line, is fixed in the beam 1, the axis OX is directed z=0 from the left to the right of the middle 

line, and the axis OZ is directed downwards. In the given system of coordinates, the space Ω is 

defined in the following way (see Fig. 1): . 

Figure 1. The settlement scheme 
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Equations of beams motion, as well as the boundary and initial conditions, are obtained from the 

Hamilton-Ostrogradskiy principle. 

The contact pressure is estimated within the Kantor model [10]. The geometric non-linearity is 

taken in the von Kármán form. The beams are isotropic, elastic, and obey Hook’s law. The 

longitudinal dimensions of beams are larger than their transverse dimensions and the beams have the 

unit thickness. There is a gap between the beams - . The clearance is less than 0.2h, where h is the 

height of the beam, i.e. we consider small gaps between the beams. 

The Cauchy problem is also solved numerically, and hence solutions essentially depend on both 

the chosen method and the time step integration. Therefore, in order to achieve reliable results, the 

Cauchy problem is solved using the Runge-Kutta of the 4th (rk4) and the 2nd (rk2) orders [11], the 

Runge-Kutta-Fehlberg of the 4th order (rkf45) [12, 13], the Cash-Karp of the 4th order (rkck) [14], 

the Runge-Kutta-Prince-Dormand of the 8th order (rk8pd) [15] as well as the implicit Runge-Kutta 

methods of the 2nd (rk2imp) and the 4th (rk4imp) orders. 

The spectrum of the Lyapunov exponents has been estimated using three methods based on 

Kantz [16], Wolf [17] and Rosenstein [18] algorithms. This will ensure the reliability of the obtained 

numerical results. 

3. Mathematical models of the contact interaction of beams described by hypotheses of the 

first, second and third approximations 

The displacements of an arbitrary point of a beam, in the framework of the third-approximation 

hypothesis, are written as follows: 

�� ���� �� 32 zuzzuu x
z ; , (1)

where  - is the transverse shear function, – are the unknown functions, – is the deflection. 

We receive system of nonlinear partial differential equations for two Reddy-Pelekh-Sheremetyev 

beams in the displacements taking into account energy dissipation: 

   (2) 

where: - are the sequence number of beams, , ,

,  - are the non-linear operators,  - is the transverse shear 

function,  - are the deflection and displacement functions of the beams, respectively, К – is the 
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coefficient of transverse stiffness of the contact zone.  

The equation of motion of the beam element (2) contains a fourth-order derivative, which is 

extremely important in proving the existence of a solution of the equation and the convergence of 

various methods for their solution. The hypothesis of the second approximation - the of Timoshenko 

hypothesis, consists in the fact that tangential displacements are distributed along the beam thickness 

according to a linear law, i.e. in expression (1) there remain only linear terms, the terms underlined by 

one line are assumed to be zero. 

Equations in displacements for a structure of two beams, in a dimensionless form, where both 

beams are described by a second approximation model: 

    (3) 

- these are nonlinear operators analogous to those 

given after the system of equations (2). Differential equations derived from the Timoshenko 

hypothesis have the highest second partial derivative with respect to x, which sometimes makes the 

proof the convergence of certain methods difficult. To obtain the Euler-Bernoulli equations, we will 

assume that the tangential displacements are distributed linearly along the thickness, and any 

cross-section normal to the midline before deformation remains after deformation by a straight line 

and normal to the midline, the height of the section does not change. In expression (1), the zero terms 

are underlined by one line and replace by a rotation angle for the term underlined by two 

lines. Thus we obtain the Euler-Bernoulli equations.

Equations governing the dynamics of two Euler-Bernoulli beams with respect to displacements 

and taking into account frictional energy loss (dissipation) are governed by the following PDEs: 

    (4) 

where , ,  are the 

nonlinear operators.  

In order to model the contact interaction of the beam within the Kantor model, we introduce the 

term ,  into the equation governing the beams, i - stands for the 
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beam number. The function is  defined by the formula = , i.e. if =1

the beams are in contact , otherwise there is no contact between [10] (see Fig. 1).

By “beam 1” we understand the externally beam loaded, whereas “beam 2” stands for the 

unloaded beam. We must add boundary and initial conditions to the systems of differential equations 

(2) – (4). In equations (2) – (4) bars are omitted. 

The system of governing PDEs supplemented by boundary and initial conditions is reduced to 

the counterpart dimensionless form using the following variables: 

     (5)  

, 

where: E – is the Young’s modulus; – is the gravity of Earth;  is the specific gravity of the 

beam material, 2h - is the height, a - is the length of beams, respectively. 

The beam 1 is subjected to the uniformly distributed transverse harmonic excitation of the 

following form: 

,        (6) 

where  stands for the amplitude and  for the frequency of excitation. 

The obtained system of non-linear PDEs (2) – (4) is reduced to ODEs using the FDM (Finite 

Difference Method) with the approximation , where c – is a step regarding the spatial 

coordinate. The Cauchy problem is solved using the Runge-Kutta methods in time. 

On the basis of the described algorithms, the program package has been developed, which allows 

one to solve the given problem with respect to the control parameters . The main attention has 

been paid to control and avoid the occurrence of penetration of the structural elements. As it has been 

already pointed out, the studied problems are strongly non-linear, and hence an important question 

regarding reliability of the obtained results arises. The analysis of the results was carried out using 

signals, Fourier power spectra, Poincaré pseudo-mappings, phase 2D and 3D portraits, wavelet 

spectra based on the Gauss 32 mother wavelet. The beam 1 is subjected to the uniformly distributed 

transverse harmonic excitation (6). Where . The beam clearance equals        

.

4. Numerical results 

4.1. Task 1. Both beams of the packet are described by the kinematic hypothesis of the 

first approximation 

We must add boundary and initial conditions to the system of differential equations (4). 
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Boundary conditions for case when both ends of the beams are rigidly clamped: 

=    (7) 

Initial conditions:

(8)

A preliminary study was made of the convergence of the FDM.

We are compared the signals, the Fourier power spectra, the Poincaré pseudo-map, the Gauss 32 

wavelet spectra, phase portraits (2D and 3D) for different values of integration intervals n=40; 80, 

120; 160. It was found that complete coincidence of signals for both beams occurs when n=160. The 

results were obtained using the 8th order Runge-Kutta method in the modification of Prince-

Dormand. 

It should be emphasized, that earlier in [19] the convergence of the results for the chaotic state of 

the system was determined from the convergence of the Fourier power spectra, and convergence with 

respect to the signal was not required. After obtaining the convergence of the solution by the FDM,

was made a comparison of solutions obtained by various methods of Runge-Kutta type. The results 

are completely the same for the Runge-Kutts of all orders. 

The values of the highest Lyapunov exponent, calculated by the methods of Wolff, Rosenstein, 

and Kants, are compared depending on n. The obtained values result from the computation using the 

8th-order Runge-Kutta method. It should be emphasized that different methods of computation of the 

Lyapunov exponent are needed to obtain reliable/true value and, consequently, reliable estimation of 

chaos. When using the FDM, for the number of beams partitions n=40, 80, 120; 160 for any 

mentioned method, the Lyapunov exponents coincide with an accuracy up to the third decimal digit. 

Furthermore, all of the largest Lyapunov exponents (LLEs) are positive. In what follows we define 

how the LLEs depend on the method employed for solution of the Cauchy problem. For this purpose, 

we have computed the Lyapunov exponents using the Wolf, Kantz and Rosenstein algorithms for 

n=160. On the contrary to the dynamic characteristics, we have not observed full coincidence of the 

results. However, the difference between the minimum and the maximum of the exponents computed 

for different Runge-Kutta methods using the Wolf algorithm for the beam 1 is about 0.07, whereas the 

same done by the Rosenstein and Kantz methods yields the difference of 0.008. Convergence up to 

the second decimal digit has been observed for each of the computational methods of the LEs 

computation. It should be noted that all values of the LLE, independently of the employed method of 

the solution of the Cauchy problem, the beam partition number, and the employed LLE method, are 

positive.

Based on the analysis of dynamic indicators and the values of LLEs, it can be concluded that the 

oscillations of the investigated beam structure are chaotic and the revealed chaos is true. 
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4.2. Task 2. Both beams of the packet are described by the kinematic hypothesis of the 

second approximation 

Let us consider the case when both beams are described by a second-approximation model (the 

Timoshenko model). We must add boundary (9) and initial (10) conditions to the system of 

differential equations (3). Both ends of the beams are rigidly clamped: 

  (9) 

Initial conditions:

              (10)

Here the bars under the dimensionless parameters are omitted for simplicity. 

A preliminary study was made of the convergence of the FDM depending on the 

400.

For n = 40; 80; 120 the deflection is very different from the deflection counted with a large n. 

Starting with n = 240, deflections for the first beam coincide. For the second beam, the convergence 

by the number of divisions of the segment is much worse and begins with n = 360. The error between 

the signals calculated at n = 360 and n = 400 is 3%, but the signals coincide in shape over the entire 

time interval. The results were obtained using the 8th order Runge-Kutta method in the modification 

of Prince-Dormand. 

The difference in signals does not exceed 2% for beam 2 for different methods of the Runge-

Kutta class at the central point of the beams, at the same time. The greatest difference is between the 

methods of the second and eighth order. 

In addition to the convergence of the signals in the center of the beams, let us check the 

convergence of the solution along the length of the beam. For this purpose, the plots of the deflection 

of beams were compared at the same instant of time t=500 at n=40; 80; 120; 240; 360; 400. It was 

revealed that the shape of the median line deflection along the length of the beam completely 

coincides for beam 1 at n = 240; 360; 400, and for beam 2 with n = 360; 400. 

To make a decision on the reliability of the obtained results and the validity of chaotic 

oscillations, it is necessary to achieve convergence in the spectra of beam power, wavelet spectra, 2D 

and 3D phase portraits, and the Poincaré section. All the dynamic indices coincided for both beams at 

n = 400. 

Based on the above analysis, we will take it for further research, which will ensure the maximum 

convergence of the results of beam 1 and beam 2. To solve the Cauchy problem, it is necessary to use 

the Runge-Kutta methods of the 8th order. 
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Based on the above analysis, we will take n=400 for further research, which will ensure the 

maximum convergence of the results of beam 1 and beam 2. To solve the Cauchy problem, it is 

necessary to use the 8th order Runge-Kutta methods. Let us investigate the convergence of the values 

of the LLEs, calculated by three different methods-Wolff, Kantz, and Rosenstein. In Table 1 we give 

the values of the LLEs for different n and for different methods for solving the Cauchy problem. 

Table 1. The LLEs calculated for signals obtained in solving the Cauchy problem by various methods 

of Runge-Kutta type with n=400. 

The Runge-

Kutta 

methods

Beam 1 Beam 2

Wolff Rosenstein Kantz Wolff Rosenstein Kantz

Rk8pd 0,01658 0,05646 0,02191 0,02835 0,04617 0,02363

Rkck 0,01399 0,05528 0,04583 0,02837 0,04583 0,02156

Rkf45 0,01556 0,05035 0,02300 0,02835 0,04321 0,02128

Rk4imp 0,01468 0,04298 0,01922 0,02832 0,03887 0,02051

Rk4 0,01414 0,04228 0,01952 0,02827 0,03911 0,01812

Rk2imp 0,01464 0,03492 0,01520 0,02828 0,03428 0,01752

The LLEs for the first beam are the closest ones by the Rosenstein method, and for the second 

beam - according to Wolf's method. The convergence of the LE as a function of n is good in the 

framework of one method. Up to the second decimal place, the values obtained by the Rosenstein 

method at n = 400 and 360 for the beam 1 are the same. For beam 2, the values of the Lyapunov 

exponent obtained by the Rosenstein method differ by one-hundredth for the same n. The Kantz 

method also gives convergence to the second decimal point at n = 400; 360. 

In all the cases, the sign of the LLEs is positive, which indicates that the vibrations of beam 

structure is chaotic.  

4.3. Task 3. Both beams of the packet are described by the kinematic hypothesis of the 

third approximation 

We must add boundary (11) and initial (12) conditions to the system of differential equations (2). 

Both ends of the beams are rigidly clamped:

               (11)

, i=1, 2.
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Initial conditions:

              (12)

Analogously to the problems described above, the convergence of the results is investigated 

depending on the number of intervals for the partition of the beam n = 40; 80; 120; 240; 360; 400; 

440 and on the method for solving the Cauchy problem. The conclusion about the convergence of the 

results was made on the basis of the analysis of signals, power spectra, Poincaré pseudo-mappings, 

phase portraits. 

It was found that the coincidence of signals for beam 1 occurs at n = 360, for beam 2 at n = 400. 

The convergence for different methods of the Runge-Kutta class for the beam 1 is complete, and for 

beam 2 there are differences between the methods of the 2nd and 4th order from the 8th order 

method. 

Thus, to solve the problem of the contact interaction of two beams described by the kinematic 

hypothesis of the third approximation, when using the FDM of the second order, the required number 

of partitions along the spatial coordinate must not be less than 400. As the method for solving the 

Cauchy problem, the Runge-Kutta method 8-th order in the Prince Dormand modification. For each 

considered problem, the values of the LLEs were calculated from three different algorithms. All the 

LLEs are positive, which allows us to speak of the truth of the chaotic oscillations of the studied beam 

structure. 

5. Comparative analysis of the tasks 1-3 

In Table 2 we give the main dynamic indicators for each of the described problems. The results 

obtained by the 8th order Runge-Kutta method in Prince-Dormand modification are presented. 

For task 1, the vibrations of the beams are three-frequency, and the frequencies are linearly 

dependent on the frequencies . The phase portraits and pseudo-Poincare mappings for beams 

1 and 2 have significant differences between themselves. For task 2, the Fourier power spectrum of 

beam 1 has four frequencies with a slight noisy at low frequencies. For the same problem, the power 

spectrum of beam 2 reflects a greater number of noise frequencies, but the fundamental frequencies 

are the same as for beam 1. All frequencies are linearly dependent. The greatest number and 

amplitude of noise frequencies is observed in the case of problem 3. In contrast to problems 1 and 2, 

on the power spectra of both beams there is the frequency of the first bifurcation . The 

remaining dynamic characteristics are well correlated with the Fourier power spectra. 
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Table 2. Dynamic characteristics of beams vibrations. 
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6. Conclusions 

The continuous mechanical system cannot be truncated to the system with a finite number of degrees 

of freedom, but the problem is, indeed, of an infinite dimension. 

We have detected, the occurrence of the phase synchronization of beams vibrations for the 

investigated system, among others. In addition, all frequencies exhibited by beam vibrations are in 

resonance relation with the excitation frequency. 

Regardless of the methods for solving the problem and the hypotheses used at the modeling 

stage, it can be concluded that the vibrations of the two-layer beam structure are chaotic. The 

magnitude of the amplitude of the beam vibrations for all problems are of the same order. 

It was found that with an increase in the number of partitions, the beam vibrations are 

regularized. 
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