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Abstract: Dynamics of a parametric pendulum excited by a wave-modulated discrete 

function of its length is investigated both analytically and with the use of computer 

simulations. An existence results of almost periodic sequences of ordinary differential 

equations with linear boundary value conditions are observed. Behavior of an 

exemplary oscillator subjected to both an almost-periodic step elongation and forcing, 

analogously tends to almost-periodic motions. Finally, conditions for that 

synchronization as well as numerical trajectories on phase planes and Poincaré sections 

are presented. 

1. Introduction 

In this study two nonlinear dynamical system of one and three degrees of freedom with a wave-

modulated length and a variable-length spring pendulum [3,4,7] and a vibrating suspension [1] are 

mathematically derived. 

Parametric excitation of a rigid planar pendulum caused by a square-wave modulation of its length 

is investigated  in [2] both analytically and with the use of computer simulations. The threshold and 

other characteristics of parametric resonance are found. The role of non-linear properties of the 

pendulum in restricting the resonant swinging is emphasized. The boundaries of parametric instability 

are determined as functions of the modulation depth and the quality factor. Stationary oscillations at 

these boundaries and at the threshold conditions are investigated. The feedback providing active 

optimal control of pumping and damping is analyzed. Phase locking between the drive and the 

pendulum at large amplitudes and the phenomenon of parametric autoresonance are discussed. 

The existence of the resonance phenomena both external and internal occurs in vibrating structures 

as an increased amplitude of vibrations. In general, from the engineering point of view this type of 

grazing behavior is usually unwanted also in solid bodies. Appearance of resonance generate greater 

complexity of a mechanical system behavior. In this paper, the study is performed to create the 

simulation and investigation for better understating of resonance phenomena of a periodically forced 

slider-spring pendulum mechanical system of three degrees of freedom. 

Pendulum can be excited parametrically by a given vertical motion of its suspension point. In the 

frame of reference associated with the pivot, such forcing of the pendulum is equivalent to periodic 
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modulation of the gravitational field [2]. This apparently simple physical system exhibits a surprisingly 

vast variety of possible regular and chaotic motions. Many contributions are devoted to investigation 

of the pendulum with vertically oscillating pivot: see, for instance [8]. A widely known curiosity in the 

behavior of an ordinary rigid planar pendulum whose pivot is forced to oscillate along the vertical line 

is the dynamic stabilization of its inverted position, occurring for the precise intervals of the driving 

amplitude and frequency. 

 The pendulum may be suspended to the flexible element. In this system the autoparametric 

excitation may occur as a result of inertial coupling. Analogous behavior happens when the mass is 

attached to the pendulum type elastic oscillator, and then, it is possible to observe autoparametric 

nonlinear coupling between the angle of the pendulum and elongation of the spring. All of such cases 

depend on the set of parameters for the investigating system. Examples are as follows: dumping, mass 

ratio of components, and specification of external excitation. As a result of system specification, the 

resonance phenomena transferring the energy between system components or their mutual excitation 

can appear differently. 

2. Problem description 

We analyze the three-degrees-of-freedom dynamical system presented in Fig. 1. 

 Our system consists of an elastic pendulum with the initial length l0, the stiffness k and the damping 

c. The pendulum is attached to the moving slider with the point-focused mass M. The slider moves 

horizontally along the x-axis. The mass m hangs down from the end of the spring. The body of mass M 

(slider) is subjected to the harmonic vertical excitation force F(t) = F0cosωt. The planar mechanical 

system presented above has three degrees of freedom. The generalized coordinates are assumed for the 

angle θ between the pendulum spring and the vertical axis z (inclination angle), the incremental 

elongation of the spring Δs and the horizontal displacement x of the body of mass M. 

  

Figure 1.   Dimensions of loaded (stretched or compressed) and unloaded (free) linear spring (a), 

a variable-length forced spring pendulum system of three degrees of freedom (b). 
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 Any of the existing phenomena cannot be presented, examined and transferred to mathematical or 

engineering problem in the infinitely direct way [9]. According to this fact some assumptions allowing 

for a reduction of the complexity of the analyzed problem will be made. To weaken the system’s 

complexity, but still maintaining its basic properties we have assumed: 

 - friction of the slider does not exists in the dynamical system; 

- energy dissipated by the frictional contact of the base and the slider vibrating on it can be 

compensated from an external source of energy, for instance, determined by a control system; 

- radial elongation of the spring pendulum exists; 

- the spring is considered as massless, and its force of reaction described by Hooke’s law appears 

when it is stretched or compressed from its free length; 

- the slider has a point mass focused at the rotationally constrained end (upper) of the spring; 

- excitation is caused by an external harmonic force, e.g., it can come from a magnetic field; 

- mass of the spring pendulum is focused in a point at the second (lower) end of the spring; 

- damping of motion is associated only with elongation of the spring of the pendulum. 

We assume the almost ideal case in which the dissipation of energy by the frictional contact could 

be partially compensated by an external source. 

3. Two mathematical models of pendulums with variable length 

For the mathematical description of the dynamical system with a time-varying parameter, such as the 

variable length of the pendulum, the Hill or Mathieu equations are often used [10]. Nevertheless, in 

similar studies referring to the analyzed case, the Euler-Lagrange equation can be used. 

3.1. A variable-length pendulum springily attached to the forced very weakly damped 

slider 

 The kinetic energy of the analyzed three-degrees-of-freedom system is calculated according to 

the sum of kinetic energies of both system bodies (see Fig. 1): 
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The potential energy of the analyzed mechanical system is a sum of a) the energy of the linear 

spring, that is accumulated after the incremental elongation Δs and the static elongation Δlst (static 

stretching or compression by a hanging pendulum body of mass m) measured from the equilibrium free 

length  of the spring; b) the gravitational potential energy of the body of mass m on the vertical 

distance (Δs + l)cosθ between centers of the slider and the pendulum body, i.e.,  
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For each component of the vector of general coordinates yk, at independence of the assumed 

general coordinates, the Lagrangian L = U ‒ V satisfies the following Euler-Lagrange equation as 

follows:  
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where Qk is understood to be the reminder of the k-th generalized force when viscous damping of 

motion of the pendulum body in direction s is accounted for with the Rayleigh dissipation function: 
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After applying the equations (1), (4) and (6) to the Euler-Lagrange equation (5), for each 

generalized coordinate yk, we get the three coupled differential equations of motion for each degree of 

freedom. 

 For the generalized coordinate θ (pendulum angle): 

2 cos sin 0.s s x g� � � �� � � ��� �� ��  (7) 

 For the generalized coordinate s (pendulum elongation): 
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 For the generalized coordinate x (slider displacement): 
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Equations (7)-(9) can be algebraically decoupled with respect to the second derivative, we have: 
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where 
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expresses acceleration of the slider. 

The system (10) of three second order ordinary differential equations is highly non-linear due 

to multiplication of state variables and some trigonometric functions. It describes the continuous system 

dynamics that will be subject to an analysis of long term solutions that will occur far and near its 

resonance zones. Numerical solution of the system of equations has to be preceded by its transformation 

to a system of six first order differential equations, assumption of some initial conditions for the six-

element state vector and also by the change of the variable s = Δs + Δlst + l0, so the numerical solution 

referred to the second degree of freedom (the state variable s) will represent an incremental elongation 

of the spring, i.e., Δs, about its equilibrium length l0. The system dynamics will be investigated in the 

next section. 

3.2. A damped mathematical pendulum with periodically modulated length 

Let us consider the motion of the damped mathematical pendulum [5] with changing length l = l(t) and 

external force e = e(t) given by 
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 We suppose that l(t) and e(t) are almost periodic step functions in the following sense: there are 

sequences 
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and for any tn < t < tn+1, we have: 
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Moreover, we suppose that l(t) and r(t) are step functions with almost periodic jumps. We are 

interested in finding conditions on l(t), e(t) and c that Eq. (12) has a bounded solution on R with the 

same almost periodic properties as l(t) and e(t). To solve this problem, a sequence of ordinary 

differential equations with linear boundary value conditions has to be studied. Being motivated by the 

approach presented in [6], considering continuous almost periodic ordinary differential equations, the 

boundary value problem can be solved with the use of Banach fixed point theorem together with a 

method of majorant functions. For a simplicity, taking into account a concrete form of Eq. (12) the 

solution will be found, as well as to visualize the pendulum’s behavior, some numerical computations 

performed. 

 Let the difference equation be analyzed in the form: 
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then Eq. (18) has a solution of the form: 
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4. Numerical computations 

At this stage of our study, the dynamics of the very weakly damped pendulum is discussed. In Fig. 7, 

we see an interesting example of quasi-periodic oscillations of the slider-pendulum system in each 

degree of freedom. It is confirmed in Fig. 7b by three closed color curves on Poincaré maps. The slider 

oscillates quasi-periodically with the frequency f2 ≈ 0.9707 being synchronized with the same frequency 

of angular oscillations of the pendulum. Additionally, with regard to the weakly damped case and in 

comparison to the previous case, the elongation of the spring pendulum is much greater as well as the 

remaining state variables take higher maximal amplitudes of oscillations. 
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a)  

b)  

c)  

Figure 2.   Time histories with amplitude modulation of the length of the pendulum given by Eq. (10), 

phase planes (grey lines) and Poincaré maps (red, green and blue dots) for the case of 

weakly damped variable-length spring pendulum (see Sec. 3, c = 0.01 Ns/m). Parameters: t0 

= 9775.12, tk = 10032.36, tob = 257.24, T = 0.6431 s, nT = 400, ω = 9.77 rad/s. 
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d)    

Figure 2 (continued). 

a)  

b)  

Figure 3.   Time histories with amplitude modulation of the length of the pendulum given by Eq. (10), 

phase planes (grey lines) and Poincaré maps (red, green and blue dots) for the case of 

weakly damped variable-length spring pendulum (see Sec. 3, c = 0.01 Ns/m).  

Parameters: t0 = 988.848, tk = 1030.05, tob = 30.9015, T = 1.03005 s, nT = 40, ω = 6.1 rad/s. 
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c)   

d)   

Figure 3 (continued). 

Figures 2 and 3 represent quasi-periodic behaviour of all system bodies confirmed by closed curves 

on Poincaré maps. Inspecting the spectral power density plots in Fig. 2c and 3c, each mode of 

oscillations is associated with a slightly different frequency. It is a very characteristic dynamical 

behaviour since at least two different frequencies of oscillations are reported. 

5. Conclusions 

Two mechanical systems consisting of a variable-length pendulums were subject to a mathematical 

derivations and numerical computations. The two systems dynamics was investigated based on the 

derivation of mathematical model and the resonance plot obtained for the case of very weak damping 

of incremental elongation of the pendulum. The observations brought us interesting results, 

summarizing that the three-degrees-of-freedom mechanical system with partial dissipation of kinetic 

energy of motion oscillates mainly periodically and quasi-periodically. Nevertheless, the system 

dynamics can exhibit chaos in a close vicinity of resonance peaks of maximum amplitudes. The damped 

spring pendulum with a moving point of its attachment has two modes of oscillations, the pendulum 
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angle of rotation mode and the spring incremental elongation mode. Finally, the second model of a 

mathematical pendulum with jumping length has been defined for proving the existence of almost 

periodic solutions. A mathematical analysis supported with numerical computations of the jumping 

discontinuity system will be taken into a deeper consideration in further works. 
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