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Abstract: The work focuses on a special class of reduced models of resultant friction
forces coupled with rolling resistance for finite size of contact area and their
applications in modelling and effective numerical simulations of spatial rigid body
dynamics. The contact models are based on the integral expressions assuming fully
developed sliding and Coulomb’s friction law at each element of a finite contact zone.
The integral models are then approximated by special functions, more effective in
numerical simulations. The contact models are applied in different configurations of a
spatial pendulum with Cardan joints, equipped with a special movable obstacle situated
below the pendulum and limiting the space of admissible positions of the system. The
models are tested numerically during investigations of bifurcation dynamics of the
pendulum as well as a special experimental rig is prepared for their experimental
validation.

1. Introduction

In many fields of science like mechanical engineering, mechatronics, robotics or control theory there
are systems which consists of pendulums or multi-pendulums. They often play a significant role in
system dynamics and may lead to interesting bifurcation phenomena. Analyzing the systems with
pendulums, one can encounter models with spatial pendulums with a leading example, which is a single
spherical pendulum and its different configurations [1,2]. The other more complex system, which is a
spatial multi-dimensional pendulum is much less frequent object of interest and scientific analysis
concerning pure non-linear dynamics [3]. The reason for the lack of works in this area may be the
complexity of the system and its analysis.

Another important part of the analysis of a mechanical system is the friction and impact
investigation. Both above mentioned components of the system play a significant role in changing
bifurcation dynamics. Therefore, their investigation and developing new methods of analysis should be
one of the most important steps in mechanical system study. On the other hand, new developed methods
should lead to fast and reliable numerical simulations of the analyzed mechanical system. For this
reason it is necessary to validate the numerical results with the real object measurements. In this case,

not only the friction forces distribution is important, but modelling of impact in 3D space as well.
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However, the analysis of full contact problem may result in high computational cost and a need to use
such methods as finite element method. Therefore, the simplified or reduced models may be introduced.

An example of such approach is presented in the paper of Contensou [4], where one can find an
integral model of friction force for fully developed sliding on a circular contact area. Another example
may be found in the work of group of researches, who developed special group of approximations of
the integral model friction [5], which allows to avoid integration over the contact area. Special
approximations were presented for different shapes of the contact, not only the circular one [6]. An
exemplary usage of the introduce approximations was presented in the numerical simulations of
wobblestone, billiard ball and full ellipsoid of revolution [7-9].

This paper presents the mechanical system consisting of the double spatial pendulum with a
spherical end of the second pendulum’s limb, which can be in contact with a movable obstacle. This
work is the collection of elements of the previous works [3, 6-10] with the continuation by new
experimental rig development and further analysis of the system of double spatial pendulum with
obstacle. The friction force is modelled in the similar way as presented in works [6-9], while Hertz
stiffness with special model of damping [11] is used for normal force modelling.

Section 2 of this paper presents the model of the pendulum and the special laboratory stand for the
results verification. In section 3 the numerical analysis of the system is presented. The summary and

conclusions are drawn in section 4.

2. Mathematical model

The analyzed mechanical system is the double spatial pendulum with a solid ball at the end of second
limb. The ball can be in contact with a rotating obstacle. The physical model and its application in an
experimental rig is presented in Fig. 1. The center O of the global coordinate system Oixyz is situated
at the geometric center of the first massless Cardan-Hook joint. The joint connects the first element
(body 1 of mass m1) of the pendulum with the body 0. The body 0 is connected to the DC motor, which
generates the rotational motion of the body 0, with angular position represented by angle y1. Since the
next coordinate system Oix1y1z1 is fixed with respect to the body 1, the angular position of the first limb
of pendulum may be represented by the following sequence of rotations: by angle w1 about axis z1, by
angle 01 about axis x1 and by angle ¢ about axis y1. It is assumed that for each rotation angle equal to
zero, the two coordinate systems O1x1y1z1 and Oixyz overlap each other.

The second element (limb 2 with mass m2) of the pendulum is connected to the first one by the
identical massless Cardan-Hook joint. The centre Oz of the joint lies on the axis Oiz1 and its position is
defined by the parameter Li= O10,. The similar sequence of rotations is used to describe angular
position of the second limb: by angle 62 about axis )2 and by angle ¢2 about axis z2 of the body 2 — fixed

coordinate system Oaxay2z2, with the centre at the point Oz. It is assumed that the coordinate system
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O2x2)222 has the parallel axes to the corresponding ones of the coordinate system Oix1y1z1 for 62 and ¢2

equal to 0.

Figure 1. The double spatial pendulum with movable obstacle — model and experimental rig.

The ball at the end of second limb of pendulum, which can contact the movable obstacle 3, has a
radius R and is centered at the point O3 lying on the axis Oaz2. The position of the center of the ball is
described by the parameter L= 020;. The assumption has been made, that the mass centres of both
links of pendulum (C1 and () lie on the corresponding axes Oiz1 or O2z2. Parameters e1= O1C1 and ex=
02C> define positions of the mass centres. Additionally, the coordinate systems Oix1y1z1 and O2x2y2z2
are the principal axes of inertia of the corresponding bodies. Finally their mass distribution are defined
by six parameters /v, Iyi and L; (i=1,2), which describes the principal central moments of inertia of the
corresponding bodies with respect to the axes parallel to the corresponding axes Oixi, Opyi or Oizi. The
last body in the mechanical system analysed is the rotating disk 3. Its rotation about the axis z of the
global coordinate system is defined by the velocity ws. Moreover, the disk can change its horizontal
position, which is described by the parameter zo - the coordinate of any point of the disk’s surface along
the axis z.

Based on the physical model described above, the experimental rig was made, which is presented
in Fig. 1. It consists of exactly the same elements as presented in the physical model - body 0, limbs 1

and 2 and movable obstacle 3. To provide the rotational movement of the body 0 the highly dynamic
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DC servo drive with integrated 4Q servo controller is used. It is equipped with incremental encoder
with a resolution of 1024 pulses per revolution. To measure the movement of the pendulum limbs, there
are two separate internal measurement units, which combine a 3-axis gyroscope and a 3-axis
accelerometer on each board. Sensors are communicating with the processor by 12C bus and all wirings
are made through the slip ring. The transmission between its stator and rotor takes place via sliding
contacts, which allows the data to be transferred to the processor.

Mathematical model of the system is based on the work [10] and is expressed using the Lagrange’s

formalism
4l or —£+6—V=Qe., 4 E —alJfal:Qw-’ i=1,2 W
dr\ 06, | 06, 06 ' dt\og; ) Op; Op; ’

where angles 6, and ¢; (i=1,2) are chosen as generalized co-ordinates and T denotes kinetic energy,
V'—is potential energy of gravity forces, Oy and O, (i =1,2) — the corresponding generalized forces.

It is assumed that the pendulum is driven by the angular velocity of the body 0 defined by the following

function of time
w(t)=wy +gcos(Qr) . 2

The generalized forces are divided into the parts Oe. (& =6, p; i=1,2) representing the contact

forces and Qe, representing damping in the joints:

Ori = Oic = Oeipy - (3)

Resistance in the joints is modelled in the following way

inb:Mb,i’ §:e’¢’ i:1’2 (4)
v & +sp

where M, is magnitude of the resistance torque common for all the joints and &, is parameter, which

initially was assumed to be small and played a role of regularization of non-smooth sign function. But
during different experiments performed by the authors, it occurred that the function (4) with higher

values of &, can lead to better modelling of resistance in rolling bearings working in similar dynamical

systems.

The gencralized contact forces O . are related to the reaction F, =N+ T of the obstacle acting

on the ball in following way
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i

where vector r A, indicates the position in the co-ordinate system O1xyz of the point 42 being the body’s

2 fixed point taking temporarily the position of the circular contact zone center, while N and T are
normal and tangent components of the reaction, respectively.
Normal component of the impact force is modelled based on the Hertzian contact stiffness and

damping [11]
N =Nn (6)

where

(N

v I k(1=6h)  for h<0 and 1-ph=0
0 for h>0 or 1-bh<0

where n is unit vector normal to the obstacle, / is distance between the ball and the surface of the disk,
k is stiffness and b is damping coefficient of the contact.

For the contact of a ball of radius R» with an elastic semi-space one gets based on the Hertz’s theory

=, (3)
3 I_Vl +1_V2
£y E,

where vi and v2 are Poisson’s coefficients, while £1 and E» are Young’s modulus of the materials of the
contacting bodies.

Friction force T is modelled based on assumption of fully developed sliding and Coulomb friction
model valid at each point of the circular contact area with circularly symmetric contact pressure
distribution. The corresponding integral model is approximated using special function of the following

form [6-9]

Vs

=-uN ; ©
\/Vf + b%agmf, +&2

T

where 4 is friction coefficient, vs and o are translational and angular sliding relative velocities at the
center of the contact, ar — radius of the contact calculated based on the Hertz theory and depending on
the current normal loading of the contact, br — parameter depending on the contact stress distribution
and ¢ — the parameter introduced in order to regularize function (9) and avoid singularity for vanishing

relative motion of the contacting bodies.
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3. Numerical simulations

The following values of the parameters were obtained based on materials and geometric shapes of the
corresponding parts of the real pendulum being under preparation: m1=4.59 kg, mz=2.41 kg, L1 = I,1 =
0.0315 kg'm?, I.1 = 0.0078 kg'm?, 2= 0.0084 kg m?, 2= 0.0055 kg'm?, I»= 0.0038 kg'm?, L1=0.228
m, L2=0.175m, e1=0.122 m, e2=0.0586 m, R»=0.025 m. Additionally the following set of parameters

is assumed to be constant during the subsequent numerical simulations as well: g = 9.81 m/s?, Mp =
0.04 N'm, &= 0.4, vi=v>=0.3, E1=2'10° N/m?, £2=0.1-10° N/m?, b = 0.5 m’!s, zj =—425mm , y =
0.2, w; =0radls, @y =0rad/s, g=5rad/s, Q=>5rad/s and £=10" m/s (except the cases where one
of them is chosen as bifurcation parameter).

Figure 2 presents bifurcation diagrams with angular frequency of the obstacle @,; playing a role
of control parameter. Bifurcation diagrams are made for two cases: with the parameter by =0.681 (a)
corresponding to circular contact with Hertzian stress distribution and with by =0 (b), i.e. for the case

of a point contact and no relation between friction force and rotational relative motion of the contacting

surfaces.

60|

a)

Xa3 [mm]

b) ey |rad/s|
Figure 2. Bifurcation diagrams of the system with angular frequency of the obstacle w, as a

control parameter, for by =0.681 (a) and by =0 (b)
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Results of further analysis of the influence of the model (9) on the system dynamics is presented
in Fig. 3, on bifurcation diagram, where as a control parameter is chosen coefficient by . One can
observe a significant role in bifurcation dynamics of the pendulum played by the contact pressure
distribution. Next pair of bifurcation diagrams is exhibited in Fig. 4, where the friction coefficient u is
chosen as a bifurcation parameter. Fig. 5 and Fig. 6 exhibits bifurcation diagrams with position of the

obstacle z, varying quasi-statically from -428 mm to -417 mm. Note that for

25 =-L, — Ly — R, = —427mm the obstacle is below the range of the pendulum and for the

IN

20
assumed parameters the system tends to the stable fixed point with 61=¢p1= 02=p2=0. For z, = z; one
observe collision of this equilibrium position with the limiter of motion. Further increase of height of

the obstacle leads to complex bifurcation dynamics. Fig. 5 is the bifurcation diagram for by =0.681

and Fig. 6 is the bifurcation diagram for by =0.

Xo3 [mm]

Figure 3. Bifurcation diagram of the system with the coefficient by of the contact model as a

control parameter
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Figure 4. Bifurcation diagrams of the system with friction coefficient x4 as a control parameter,

for by =0.681 (a) and by =0 (b)
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Figure 5. Bifurcation diagram of the system with obstacle position z, as a control parameter, for

by =0.681 .
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Figure 6. Bifurcation diagram of the system with obstacle position z, as a control parameter, for

bT:()

4. Conclusions

In this paper, the dynamic analysis of the double spatial pendulum is presented. It consists of two limbs
connected with the Cardan-Hook joints. At the end of the second limb there is a spherical end, which
comes in contact with the moveable obstacle. The friction force between contacting bodies is modelled
based on the previous works and experience of the authors and uses the special approximation model.
The bifurcation dynamics analysis, presented in this paper, shows the differences in model's behavior,
while using the special model developed by the authors and in the case of point contact and no relation
between friction force and rotational relative motion of contacting bodies.

The bifurcation diagrams analysis shows that the contact pressure distribution has a significant
influence on the bifurcation dynamics of the system, which proves the necessity of developing advanced
models of contact forces. On the other hand, this paper presents the experimental rig, which is made to
verify the results obtained by the authors during the dynamics analysis. The results found out to be
promising and convincing enough to make the experimental verification, which is currently being

developed by the authors.
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