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Abstract: We study the stability problem for autonomous non - conservative
mechanical system in presence of potential, gyroscopic, and dissipative forces.
The matrix of dissipative forces is semi-positive, so Kelvin - Chetaev theo-
rems cannot be applied. The significance of gyroscopic forces (GF) and their
contribution to the overall phenomenon is discussed. The fact that energy dis-
sipation is incomplete is essential, because the influence of gyroscopic terms
in this case may be significantly different from the full dissipation case. It is
shown that this influence may be both positive and negative (there are some
sets in space of parameters where the asymptotic stability of the motion is
broken). As an example, the problem of passive stabilization of permanent ro-
tations of Lagrange gyroscope is considered. It is proved that adding a dashpot
to gyro with stretched inertia ellipsoid stabilizes its permanent rotations with
the exception of some ”critical” values. The last may be found analytically
from special conditions.

1. Introduction

In 1879 W. Thomson and P. Tait [1] put their attention on the fact that equations of

motion of the system, in which the gyroscopes are present, contain terms linear with respect

to velocities with a skew-symmetric coefficient matrix. When these terms are treated as

forces, then their work on the actual displacement of the system will be zero
∑n
i=1 Γi dqi = 0.

This property was accepted by Thomson and Tait for the general definition of gyroscopic

forces and, using it, they proved several theorems on the stability of the motion of gyroscopic

systems. Gyroscopic forces can be found not only in systems containing gyroscopes, but

also in various mechanical, electrical and other systems in which gyroscopes are absent.

Therefore, for the systems of the most diverse physical nature, one can draw far-reaching

analogies that can be used in various constructions. Non-conservative systems with both

dissipative and gyroscopic force are widely presented in numerous publications from physical

viewpoint [2 - 6], as well as for application purposes [7, 8].

Let the equilibrium position of the conservative mechanical system be unstable. Is it

possible to stabilize it by adding dissipative forces, i.e. to select the force in such a way that

the equilibrium position which is unstable in the presence of potential forces only becomes
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stable or asymptotically stable? The answer to this question is negative. Also it is known

that such an equilibrium position can be stabilized by a certain combination of dissipative

and circulation forces, but can this goal be achieved in the absence of the latter? In the case

when the dissipation is complete (the matrix D is positive) the answer to this question is

given by classical Kelvin-Chetaev [1, 9, 10] theorems:

Theorem 1. If the equilibrium of the mechanical system is stable under the action of

potential forces only, it becomes asymptotically stable while adding dissipative forces with

full dissipation.

Theorem 2. If the isolated equilibrium is unstable under the action of potential forces

only, it cannot be stabilized by adding arbitrary dissipative forces with full dissipation.

Theorem 3. If the isolated equilibrium is unstable under the action of potential forces

only, it remains unstable while adding arbitrary gyroscopic forces and dissipative forces with

full dissipation.

At the same time, concerning Theorem 1, as noted in a number of works (see, for

instance [11 - 13]), the requirement that the matrix characterizing dissipative forces should

be positive is in some cases superfluous. In particular, a semi-positive matrix as a rule

(with the exception of a set of measure zero) makes the stable equilibrium position of the

conservative system asymptotically stable. However, how important is the influence of the

gyroscopic forces in this case? Does the statement of the theorems 2, 3 extend to the case

of partial energy dissipation?

In this paper, we would like to draw attention to two points: 1) In contradiction to

Theorem 3, partial dissipative forces can make the gyroscopically stabilized motion of the

system asymptotically stable; 2) Gyroscopic forces can ”spoil” the asymptotic stability of

the system. Namely, a motion that is asymptotically stable with potential forces and partial

dissipative forces can become marginally stable when the gyroscopic forces are added.

2. Main results

We consider the motion of a holonomic mechanical system subject to stationary, ideal con-

straints. The position of this system is specified by n positional and m cyclic generalized

coordinates. If such a system has stationary motion, then stability problem may be solved

by consideration the linearized system which may be presented in the following form

Mξ̈ +Bξ̇ +Kξ = 0, (1)

whereM,K,B are square real matrices (two first of them are symmetric and positive), B is

semi-positive and always may be separated on symmetric (dissipative) and skew-symmetric

(gyroscopic) components B = D +G, ξ ∈ R
n.
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Below we use the block notation for square matrix P of s+ l order in the form

P =

⎛
⎝ P 11 P 12

P 21 P 22

⎞
⎠ ,

where P 11,P 22 are square matrices of s and l orders respectively, and P 12, P 21 stand for

the corresponding rectangle matrices. Also we split the vector ξ on sub-vectors

ξ = col(x, y), x ∈ R
s, y ∈ R

l.

We suppose that matrix D = 0s
⊕

diag(d1, d2, · · · , dl). In other words the right lower
block D22 is diagonalized, and three other blocks are zero matrices. Matrix D22 is positive.

Similarly, we denote differential operators

L = M
d2

dt2
+B

d

dt
+K, L11 = M11

d2

dt2
+G11

d

dt
+K11,

and the corresponding lambda-matrices (matrix polynomials)

Λ(λ) = Mλ2 +Bλ+K, Λ11(λ) = M11λ
2 +G11λ+K11. (2)

Let λ0 be some eigenvalue of L11, and β10− the corresponding eigenvector, i.e.

Λ11(λ0)β10 = 0s.

Here 0s means the matrix-column with s zero elements. Introduce the equality

Λ21(λ0)β10 = 0l. (3)

For our purposes we shall use the following theorem [14]:

Theorem 4. Let us consider a mechanical system which motion equations are described

by (1) and suppose that none of the eigenvectors of operator L11 satisfies condition (3). Then

adding to system an arbitrary dissipative force, which provides full dissipation on ẏ leads to

the following results:

I) If all eigenvalues of matrix K are positive, then equilibrium of (1) becomes asymp-

totically stable. Stability is exponential and uniform.

II) If matrix K has some negative eigenvalues – then equilibrium is unstable, even if it

was stabilized before by gyroscopic forces. Among particular solutions of the system at least

one has negative Lyapunov characteristic number.

Comparing with the statements of theorems 1 - 3, in case of incomplete dissipation

results of Kelvin - Chetaev theorems mostly persist, excluding some special relations be-

tween quantitative values that characterize the forces (some surfaces in space of mechanical
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parameters). A way of finding these relations is proposed by formulas (3). The key differ-

ence, we believe, is that case of full dissipation allows to solve the problem in qualitative

manner – by analysis only potential (or potential and gyroscopic) forces, and conclusion does

not depend on quantitative nature of them. In other words, only signs of matrix eigenvalues

are important, not their exact values or connections between them. When dissipation is

partial, this feature is lost, as it follows from (3). In particular, if matrix D is positive and

system (1) is asymptotically stable or unstable, varying the GF cannot change this. The

case of partial energy dissipation is somewhat opposed to this circumstance. More precisely,

this property is inherent only with respect to ”pure dissipative” component y of state vector,

and variation of the other gyroscopic terms related to x− component can change the result.

2.1. Example 1

Let system (1) is given with matrices

M =

⎛
⎜⎜⎜⎜⎜⎝

5 0 2 0

0 1 0 0

2 0 2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠
, G =

⎛
⎜⎜⎜⎜⎜⎝

0 g1 0 g2

−g1 0 0 0

0 0 0 g3

−g2 0 −g3 0

⎞
⎟⎟⎟⎟⎟⎠
, K =

⎛
⎜⎜⎜⎜⎜⎝

4 0 2 0

0 1 0 0

2 0 2 0

0 0 0 3

⎞
⎟⎟⎟⎟⎟⎠
,

D = h diag(1, 1, 0, 0), (4)

and g1, g2, g3 are unknown parameters.

Suppose that there exist λ0 and β0 which satisfy (3). This means that all minors of

second order of the matrix

Λ� =

⎛
⎝ 2λ2 + 2 0 2λ2 + 2 −g3λ

g2λ 0 g3λ λ2 + 3

⎞
⎠
T

are equal to zero. In fact, otherwise the rank of Λ� is maximal, and (3) cannot take place.

The rank of matrix Λ� is less then 2 if and only if all minors of second order are equal

to zero. This fact leads to restrictions

g2 = g3, (5)

and

f(λ) = 2(λ2 + 1)(λ2 + 3) + g23λ
2 = 0. (6)

For any value of g3 the polynomial f(λ) has purely imaginary roots only, hence if

g2 �= g3, then rank Λ = 2, and, according to theorem, system MDGK is asymptotically
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stable. However, if (5) holds, then system (1), (4) is marginally stable. Its characteristic

polynomial

det(Mλ2 + (D + G)λ+K) =

∣∣∣∣∣∣
3λ2 + hλ+ 2 g1λ

−g1λ λ2 + hλ+ 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2λ2 + 2 g3λ

−g3λ λ2 + 3

∣∣∣∣∣∣
has two pairs of purely imaginary roots and four roots with negative real part. The last

correspond to variables x1, x2, ẋ1, ẋ2 − the ”direct dissipative part” of state vector, and this

does not depend from magnitude of g1.

Over against, the borderline between marginal stability and asymptotic stability of the

system is tied with restriction (5), which determines a set in subspace of system parameters,

associated with x being a component of state vector, where asymptotic stability is lost.

3. Passive stabilization of Lagrange’s gyroscope permanent rotations

Figure 1. Rigid body with dashpot.

Consider a rigid body with a fixed point O, and introduce it into consideration two

coordinate systems: the fixed one OXY Z and system Oxyz which is connected with the

body. It is assumed that the body is dynamically symmetric, and the center of mass C of

the body belongs to the axis Oz. As generalized coordinates that determine the position
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of the coordinate system Oxyz with respect to the fixed one, we choose the Euler angles

θ, ϕ, ψ which are introduced in a common way (Fig.1). Inside the body a dashpot is situated

which is considered as mass m that can oscillate along the line which is orthogonal to axis of

symmetry Ox and intersects it in point O1. It is connected with carrier by viscoelastic spring

with stiffness κ and coefficient of damping �. Since the body is dynamically symmetric, we

can assume that dashpot axis is collinear to the principal axis of inertia of the body (for

example, the second). The corresponding radius vector in the coordinate system connected

with the body can be written as

r1 = l1 eX + η eY = (l1, η, 0),

where η is the distance from point O1.

Taking into account the formula v1 = ŕ1 +ω× r1, where ŕ1 is the relative derivative

on time (relative velocity) and ω is the angular velocity of the rigid body, the following

expression for kinetic energy of dashpot holds

K1 =
1

2
m[η̇2 + 2 lN η̇ω3 + η2(ω2

1 + ω2
3)− 2 lN ηω1ω2 + l2N (ω2

2 + ω2
3)].

Components of angular velocity vector are given by the kinematic Euler relations

ω1 = θ̇ cosϕ+ ψ̇ sin θ sinϕ, ω2 = −θ̇ sinϕ+ ψ̇ sin θ cosϕ, ω3 = ϕ̇+ ψ̇ cos θ. (7)

The generalized inertia tensor of the system may be written as

Ĩ =

⎛
⎜⎜⎝

I1 +mη2 −ml1 η 0

−ml1 η I2 +ml21 0

0 0 I3 +m(η2 + l21)

⎞
⎟⎟⎠ . (8)

The potential forces are presented by gravitational force and elasticity of the spring. Hence,

the potential energy of the system is given by the following formula

Π = g sin θ [(Ml +ml1) sinϕ+mη cosϕ] +
1

2
κη2,

where M is the mass of the rigid body, l = |OC|, l1 = |OO1|.
The kinetic energy of the system is as follows

K = K0 +K1 =
1

2
〈ω, Ĩω〉+m〈ω, r1 × ŕ1〉+mŕ2

1 =
1

2

4∑
j,s=1

ajs ξ̇j ξ̇s.

Here ξ = (θ, ϕ, η, ψ)T , generalized coordinate ψ is cyclic, and

a11 = I1cos
2ϕ+ Ĩ2sin

2ϕ+ 2mlNηsinϕ cosϕ, a12 = 0, a13 = 0,
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a14 = sinϕ [(I1 − Ĩ2)sinϕ cosϕ+mlNη(sin
2ϕ− cos2ϕ)], a22 = Ĩ2 +mη2, a23 = mlN ,

a24 = cosθ(Ĩ2 +mη2), a33 = m, a34 = mlNcosθ,

a44 = I1sin
2θ sin2ϕ+ Ĩ2(sin

2θ cos2ϕ+ cos2θ) +mη2cos2θ − 2mlNηsin
2θ sinϕ cosϕ.

Excluding the cyclic velocity

ψ̇ =
1

a44
(βψ − a14θ̇ − a24ϕ̇− a34ξ̇),

where βψ represents cyclic constant, we can write the following Routh kinetic potential

LR =
1

2a44

3∑
j,s=1

(ajsa44 − aj4as4) ξ̇j ξ̇s + βψ
a44

3∑
j=1

aj4 ξ̇j −W, W =
β2
ψ

2a244
+Π.

Then equations of the motion of mechanical system under study are

d

dt

∂LR
∂q̇j

− ∂LR
∂qj

= Qj , Q = (0, 0,−�η̇)T , (j = 1, 3). (9)

Stationary motions of mechanical system are governed by equality grad W = 0 or

g cos θ [(Ml +mlN ) sinϕ+mη cosϕ]− β2
ψ

a244

∂a44
∂θ

= 0,

g sin θ [(Ml +mlN ) cosϕ−mη sinϕ]− β2
ψ

a244

∂a44
∂ϕ

= 0,

gmη sin θ cosϕ−m β2
ψ

a244
(η cos2θ − lNsin2θ sinϕ cosϕ) + κη = 0.

It is easy to see that the last system has a solution (π/2, π/2, 0) and equations (9) has

equilibrium

θ0 =
π

2
, ϕ0 =

π

2
, η0 = 0, θ̇0 = 0, ϕ̇0 = 0, η̇0 = 0, (10)

which describes permanent rotations of the body with angular velocity βψ/I1 and with

”frozen” mass m. To investigate the stability of solution (9) let us introduce the following

perturbations

θ = ξ̃1 +
π

2
, ϕ = ξ̃2 +

π

2
.

For our purpose it is sufficient to get linear approximation of (9), i.e. terms of second order

from LR :

L
(2)
R =

1

2
[Ĩ2(ξ̇

2
1 + ξ̇

2
2) +mη̇

2] +ml1ξ2η+
βψ
I1
{ξ̇1[(Ĩ2 − I1)ξ̃2 +ml1η]− Ĩ2ξ̇2ξ̃1 −ml1η̇ξ1}+
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+
β2
ψ

2I21
[(Ĩ2 − I1)(ξ̃21 + ξ̃22)− 2ml1ξ̃2η] +

g

2
(Ml +ml1)(ξ̃

2
1 + ξ̃22) +mgξ̃2η − 1

2
κη2.

Introducing the dimensionless parameters

ξ3 =
η

l1
, τ =

βψ
I1
t, a =

I2 +ml21
I1

, p =
ml21
I1

, μ =
MglI1
β2
ψ

,

μ1 =
mgl1I1
β2
ψ

, h =
�

βψ
, κ =

κI1
β2
ψ

, (11)

we finally arrive to system (1) with the matrices

M =

⎛
⎜⎜⎝

a 0 0

0 a p

0 p p

⎞
⎟⎟⎠ , D = diag(0, 0, h), G =

⎛
⎜⎜⎝

0 2a− 1 2p

−2a+ 1 0 0

−2p 0 0

⎞
⎟⎟⎠ ,

K =

⎛
⎜⎜⎝

a− 1− μ− μ1 0 0

0 a− 1− μ− μ1 −1− μ1

0 −1− μ1 κ

⎞
⎟⎟⎠ .

To satisfy the requirements of paragraph 1 of theorem 4, matrix K must be positive,

and hence the following restrictions are yielded:

a− 1− μ− μ1 > 0, κ >
p2(1 + μ1)

2

a− 1− μ− μ1
. (12)

If a gyro is upstanding (the case of top), parameters μ, μ1 are positive, and the first inequality

(12) requires a > 1 (I2+ml
2
1 > I1), i.e. the generalized inertia ellipsoid is stretched (rotations

around major axis). Also the angular velocity of rotation must be high enough. Then the

second inequality (12) gives the lower limit value for stiffness of the spring κ.

In order to make sure that stabilization is in effect – solution (10) is asymptotically

stable – we have to consider the following matrix

Λ� =

⎛
⎝ aλ2 + a− 1− μ− μ1 −(2a− 1)λ −2pλ

(2a− 1)λ aλ2 + a− 1− μ− μ1 p(λ2 − 1− μ1)

⎞
⎠
T

.

If its rank is equal to 2, the motion is asymptotically stable, if not – it is marginally stable.

The last case means that columns of matrix Λ� are proportional, and therefore

2(aλ2 + a− 1− μ− μ1) = (2a− 1)(λ2 − 1− μ1), (13)

(aλ2 + a− 1− μ− μ1)
2 + (2a− 1)2λ2 = 0. (14)
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Expressing λ2 from (13) and substituting into (14) we have

(2a− 1)2[(μ2
1 + 4μ1 + 4)a2 − 2(μμ1 + 2μ+ 2μ1 + 4)a+ μ2 + 4μ+ μ1 + 4] =

= (2a− 1)2{[(μ1 + 2)a− μ− 2]2 + μ1}.

Triangle inequalities for moments of inertia I1 < 2I2 imply a > 1/2, and the system (13) -

(14) is inconsistent. Consequently, rank Λ� = 2, and the motion is asymptotically stable.

It happens because energy transfer between ”pure dissipative” variable ξ3 and two others

occurs, and this transfer with respect to ξ1 is implemented by GF influence only for any

values of gyroscopic terms (without exceptions).

The last feature surprisingly changes when gyroscope is pendent (hanging down). To

analyze this case we can add a sign ”-” before g in formulas (11), now μ, μ1 are negative.

With this change, if

a =
2 + μ±√−μ1

2 + μ1
, (15)

then rank Λ� = 1, and the motion is marginally stable. This inference can be easily verified,

because there are purely imaginary eigenvalues ± i (1 +
√−μ1). Equality (15) determines

two critical values for angular velocity value ω. Notice that mass, stiffness and viscosity of

dashpot don’t affect condition (15) – only position of point O1 (parameter l1) is essential.

Remark. We proved that inequalities (12) are the sufficient conditions of asymptotic

stability of the motion studying. At the same time they give the necessary conditions of

asymptotic stability. In fact, if at least one of these inequalities takes the opposite sign,

then the matrix K has positive eigenvalue, and according to paragraph 2 of theorem 4 (as

rank Λ� = 2) the solution (10) is unstable.

4. Discussion and concluding remarks

In this paper we turned our attention to the role played by gyroscopic forces in stability issues

for systems with incomplete energy dissipation. Influence of these forces can seriously differ

from the case of full energy dissipation. In particular, some stabilizing effect are possible

which are not available in common frames of the Kelvin-Chetaev theorems. As an example

the stabilization of symmetrical rigid body rotations is considered. It is shown that energy

dissipation in dashpot is conveying to the whole body due to presence of GF, and without

it this stabilization is not possible.
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