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Abstract In this work, we investigate numerically and experimentally the
dynamics of a pendulum vertically excited by a crank-shaft-slider mechanism
driven by a DC motor. The power supplied to the DC is small enough to observe
return influence of the pendulum dynamics on the motor angular velocity. In the
performed experiments, the motor is supplied with constant time voltages. A series
of experimental periodic solutions allowed to estimate the model parameters and, in
the further step, predict bifurcation phenomena observed in the real object.
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1 Introduction

There exist a lot of studies on nonlinear dynamics of mechanical systems composed
of pendulums in different configurations, including plane or spatial, single or
multiple, and sometimes parametrically excited pendulums. Physicians are partic-
ularly interested in those kinds of the dynamical systems, since they are relatively
simple but can exhibit almost all aspects and phenomena of nonlinear dynamics. In
some cases, an experiment is performed in order to confirm analytical or numerical
investigations [1–3]. Sometimes, in order to achieve a good agreement between the
model’s predictions and experimental data, one must take into account many details
concerning physical modeling of the real process [3].

When considering behavior of the real dynamical systems, one can encounter a
problem of mutual interactions between the oscillatory system and the energy
source of limited power, i.e., nonideal energy source. Belato et al. [4] investigated
numerically, the electromechanical system composed of a pendulum excited by a
crank-shaft-slider mechanism driven by a DC motor considered as a limited power
source. A comprehensive numerical analysis of bifurcational dynamics of a similar
mechanical system is presented in [5]. An extensive review on the nonideal
vibrating systems one can find in [6].

In the work [7], the authors investigated both numerically and experimentally an
electromechanical system consisting of a pendulum suspended on the slider of a
crank-slider mechanism driven by a DC motor. Since the power of the motor was
relatively high, the angular velocity of the shaft was almost constant. Mathematical
modeling of the same system under simplifying assumption of a constant angular
velocity of the crank, together with the improved algorithm of the parameters’
estimation, is presented in [8].

In the present work, the same structure of the mathematical model as in [7] is
used in the analysis of the similar real electromechanical system, but in the case of
relatively low power supplied to the DC motor, resulting in more variable angular
velocity of the crank. This work is also an extended version of the conference
publication [9]. In comparison to the work [9], the identification process has been
repeated because of small changes in the experimental rig resulting from certain
technical reasons. Moreover some additional parameters (previously assumed as
known) have been added to the set of identified parameters (for details see Sect. 4).
Further bifurcation analysis and model validation in Sect. 5 have also been
extended by additional analysis of some irregular attractors and more detailed
analysis of the threshold of chaos near the u0 = −8.4 V.

2 Experimental Rig

Figure 1 presents the experimental setup of mathematical model that will be
described in next part of the paper. A voltage generator 1 supplies the low-power
DC motor 3. Output shaft of the motor is connected with steel shaft 5 by aluminium
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coupling 4. Shaft 5 is embedded in pair of ball bearings 6 that provides alignment of
shafts. Ball bearings are mounted on ‘L’ bracket 7a with additional two brackets in
‘C’ 7b and ‘L’ 7c shape that support first one to be more stable. Two aluminium
strips 7d act as rails to set ‘L’ bracket both with ball bearings and with DC motor to
set them in right position.

There is also the possibility to change low-power DC motor into other one
with higher power. On the other end of shaft 5 there is mounted disk 8. Angular
position of disk is measured by the use of encoder 9 (type MHK, 360 steps)
supplied by wire 10. Rotational motion of disk is transformed thanks to joint 11
(connecting bar) into linear motion of the slider 12 moving on two horizontal
guides 13. To the slider there is mounted bracket with two ball bearings 14 (same
type as 5) and shaft 15 inserted into them. On this part there is seated physical
pendulum 16. In identical way like disk, angular position of pendulum is measured
by two types of encoders. 17 is the same type like in case of measuring position of
disk. Encoder 18 (type MAB-analog out, supplied by to batteries 19) is used to
perform longer measurement, because encoder 17 (type MHK, 3600 steps) have a
high resolution what really quickly fills up available space on PC hard disk. All data
from encoders are collected by data acquisition devices 2.

Fig. 1 Experimental setup
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3 Mathematical Modeling

In this section, there is presented the mathematical model of the experimental rig
presented in Sect. 2. It is based on the results published in the work [7]. Figure 2a
exhibits a block diagram presenting the general structure of the system. It is
composed of two main subsystems: (i) DC motor (understood as a pure electrical
object converting the electrical energy to the mechanical torque; (ii) a
two-degree-of-freedom mechanical system including all mechanical elements of the
system. The input signal (being under control) is the voltage u(t) supplied to the DC
motor. The two coordinates θ(t) and φ(t) determining the position of the mechanical
system are assumed to be outputs.

For an armature-controlled DC motor equipped with a gear transmission and
assuming that the armature inductance is negligible, one gets the following equation

M =
KT

R
igu−

KEKT

R
i2g
dθ
dt

, ð1Þ

where M is the torque on the output shaft of the gear transmission, u—input
voltage, θ—angular position of the output shaft of the gear transmission, ig—
reduction ratio of the gear transmission, R—armature resistance, KT—the propor-
tionality constant between the torque generated on the output shaft of the DC motor
and the armature current, and KE—the proportionality constant between the back
electromotive force and the angular velocity of the DC motor.

Fig. 2 Physical model of the system
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A sketch of a physical model of the mechanical section of the system is depicted
in Fig. 2b. This plane two-degree-of-freedom mechanical system is composed of
four rigid bodies (1—disk, 2—connecting bar, 3—slider, 4—pendulum) connected
by the use of four rotational joints (O, A, B1, and B2). Masses of the links 2–4 are
denoted as mb, mS, and m, respectively. Moments of inertia of the bodies 1, 2, and
4, with respect to their mass centers (located in the points O, C2, and C4), are
represented by the symbols IO, Ib, and I, respectively. The corresponding lengths of
the mechanical system are denoted as follows: a = OA, b = AB, b1 = AC2, and
r = BC4. The position of the system is determined by two angles: θ—angular
position of the disk (equal to the angular position of the gear transmission output
shaft) and φ—angular position of the pendulum. The disk 1 represents all rotating
elements of the DC motor, gear transmission, and real disk of the experimental rig.

The governing equations of the investigated system read

M qð Þ q.. +N qð Þq ̇2 +w qð Þ= f tð Þ− r q, q̇ð Þ, ð2Þ

where

q=
θ

φ

� �
, q ̇=

θ ̇

φ ̇

� �
, q

..
=

θ ̇

φ ̈

� �
, q̇2 =

θ
2̇

φ ̇2

( )
,

M qð Þ= IO + a2 F2 m+mSð Þ+F2
1mb

� �
+ a2

b2 cos
2θ b− b1ð Þ2mb +G2Ib
� �

− amrF cosφ

− amrF cosφ I +mr2

" #
,

N qð Þ= =
aFH 1+ mS

m

� �
+ aF1H1 − a2

2b2
sin2θ b− b1ð Þ2mb +G2Ib 1− a2

b2
G2 cos2θ

� �� �
amrF sinφ

− rH cosφ 0

" #
,

w qð Þ=
a
b b− b1ð Þmbg cos θ

mgr sinφ

� �
, f tð Þ= M tð Þ

0

� �
, r q,q ̇ð Þ= MRθ θ, θ ̇ð Þ

MRφ φ ̇ð Þ

( )
,

ð3Þ

and where one has used the following notation

G=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− a2
b2 sin

2θ
q , F = 1+

a
b
G cos θ

� �
sin θ, F1 = 1+

ab1
b2

G cos θ
	 


sin θ,

H = am cos θ+
a
b
G cos 2θ+

1
4
a3

b3
G3 sin2 2θ

	 

,

H1 = amb cos θ+
ab1
b2

G cos 2θ+
1
4
a3b1
b4

G3 sin2 2θ
	 


. ð4Þ
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The vector r q, q̇ð Þ contains all resistance forces and their components

MRθ θ, θ ̇ð Þ= cOθ ̇+
2
π
MO arctan εOθ ̇ð Þ+ a2F2cSθ ̇−

2
π
aFTS arctan − εSaFθ ̇ð Þ,

MRφ φ ̇ð Þ= cBφ ̇+
2
π
MB arctan εBφ ̇ð Þ, ð5Þ

The terms cOθ ̇ and 2
πMO arctan εOθ ̇ð Þ represent the viscous damping and dry friction

components of the resistance in the joint O, where cO is viscous damping coeffi-
cient, MO—magnitude of dry friction torque. One assumes that MO is a constant
parameter, independent from the loading of the joint O. The expressions a2F2cSθ ̇
and − 2

π aFTS arctan − εSaFθ ̇ð Þ represent the viscous damping and dry friction
components of resistance between the slider and guide, reduced to the coordinate θ,
where cS and TS are the corresponding constant parameters. Similarly, the terms
cBφ ̇ and 2

πMB arctan εBφ ̇ð Þ are viscous damping and dry friction components in the
joint B2. The quantities εO, εS and εB are numerical parameters used in the dry
friction model regularization. Usually they are relatively large since one wants to
approximate accurately the sign function. However it occurs that sometimes the
smaller values of these parameters lead to the better results (in the sense of fitting of
the simulation results to the experimental data)—one can find an example in the
work [8]. In comparison to the work [9], we assume three different parameters
εO, εS, and εB (previously they were substituted by one parameter ε). Resistances in
the joints A and B1 are not taken into account.

Finally one gathers the right-hand side of Eq. (6) into one vector

fr t,q,q̇ð Þ= f tð Þ− q,q̇ð Þ=

=
KMu tð Þ−COθ ̇− 2

πMO arctan εOθ ̇ð Þ− a2F2cSθ ̇+ 2
π aFTS arctan − εSaFθ ̇ð Þ

− cBφ ̇− 2
πMB arctan εBφ ̇ð Þ

( )
,

ð6Þ

where

KM =
KT

R
ig, CO =

KEKT

R
i2g + cO.

Let us note, that the mechanical viscous damping in the joint O and the back
electromotive force (multiplied by some other constants) have mathematically the
same influence on the final torque on the output shaft of the gear transmission. They
are mathematically indistinguishable and unidentifiable in the developed model.
Their aggregate action is defined by the coefficient CO.
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4 Parameter Estimation

In the process of identification, one has used three experimental solutions, with the
input signal u(t) in a form of step function with zero initial value, and constant final
value u0, equal to −10.8, −8.0 and −6.5 V, respectively. The initial conditions are
the same for all experiments: θ 0ð Þ= − π

2 rad, φ 0ð Þ=0 rad, θ ̇ 0ð Þ=0 rad s̸, and
φ ̇ 0ð Þ=0 rad s̸. The solutions tend to periodic attractors, which allows to avoid
problems of identification related to high sensitivity to initial conditions. The angles
φ tð Þ and θ tð Þ were recorded on the time interval [0, 60] s.

Because of nonideal behavior of resistances in the system (small random fluc-
tuations of friction), the angular velocity of the disk undergoes some random
changes, which cannot be described by the use of deterministic equations. These
changes are not big, but after some time they can lead to significant time shift in the
angular position of the disk. It may cause problems in fitting of the simulated
signals to those obtained experimentally, if we express them in the time domain.
This is the reason of the idea to compare the corresponding signals expressed as
functions of angular position of the disk θ.

Since we plan to use in the estimation process two different signals (angular
position of the pendulum and angular velocity of the disk), we construct the
objective function Fo in the form of weighted sum of two different parts

FO μð Þ=wφFOφ μð Þ+wωFOω μð Þ, ð7Þ

where μ is vector of the estimated parameters, wφ and wω are the corresponding
weights, and where

FOφ μð Þ= 1

∑
N

i=1
θfi − θ0
� � ∑

N

i=1

Z θfi

θ0

φsi θ, μð Þ−φei θ, μð Þð Þ2dθ,

FOω μð Þ= 1

∑
N

i=1
θfi − θ0
� � ∑

N

i=1

Z θfi

θ0

ωfsi θ, μð Þ−ωfei θ, μð Þ� �2dθ. ð8Þ

In the expressions (8) N denotes number of the compared pairs of solutions, θ0 is
common initial angle θ, θfi (i = 1, 2, …, N) are final angular positions of the disk,
φsi and φei are angular positions of the pendulum obtained by the use of i-th
numerical simulation and experiment, correspondingly. Since we measure the
angular position of the disk, we differentiate this signal with respect to time in order
to obtain the corresponding angular velocity. We do it numerically, by passing the
signal θei tð Þ (obtained by the linear interpolation of the experimental data) through
the filter of the transfer function Gf sð Þ= s

Tf s+1ð Þ2. As an output we obtain the signal

ωfei tð Þ, which appears in the expressions (8), but as a function of the angle θ. In
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order to have the proper simulation signal, which could be compared with the signal
ωfei, we also pass through the filter Gf sð Þ the numerical signal θsi tð Þ, obtaining
ωfsi tð Þ.

Using the functions (8), one assumes that initial conditions and input signals u
(t) are known and they are the same for both the experiment and simulation.
Moreover, some parameters’ values are easy to obtain by the direct measurements
of masses and lengths. They are assumed to be constant during the identification
process: mb =0.057 kg, mS =0.777 kg, m=0.226 kg, a=0.080m, and b=0.300m.
Other parameters assumed to be constant are: εO =103, g=9.81m s− 2. The
remaining parameters (as the elements of the vector μ) will be obtained by mini-
mization of the objective function Fo, using the Nelder–Mead method [10, 11], also
known as downhill simplex method. This is commonly used optimization algo-
rithm, implemented in MATLAB and Scilab functions fminsearch. One also
assumes the following values of the weights and the time constant of the filter:
wφ =1 rad− 2, wω =1 s2 rad− 2, and Tf =0.1 s.

In the estimation process one obtained the following values of the model param-
eters: KM =3.066 × 10− 2 Nm V̸, CO =3.003 × 10− 2 Nm s, MO =1.937 × 10− 2

Nm, IO =5.252 × 10− 3 kgm2, Ib =2.373 × 10− 6 kgm2, b1 = 8.801 × 10− 2 m,
cS =2.171 × 10− 1 N s, Ts =6.583 × 10− 1 N, I =1.426 × 10− 3 kgm2, r=5.417 ×
10− 2 m, cB =2.486 × 10− 4 Nm s, MB =2.162 × 10− 3 Nm, εS =27.68 and
εB =3.193. Figure 3 exhibits comparison of four numerical solutions φ θð Þ to the
model with the corresponding experimental data used during the identification pro-
cess (only the final parts of the solutions are presented). In Fig. 4, there are presented
the comparison of the corresponding solutions ωf θð Þ. The optimal value of
the objective function (7) is 2.298 × 10− 3. Note that in comparison to thework [9] the
parameters εS and εB have been added to the set of the identified parameters,
which allow to obtain better modeling results (see the comments in Sect. 1 and the
work [8]).

5 Bifurcation Dynamics

Further experimental investigations of the systems showed that it can also exhibit
irregular behavior. For example the constant input voltage of −8.51 V leads to
irregular dynamics, with full rotations of the pendulum, presented in Fig. 5. These
solutions were not used in the identification process because of potential problems
related to high sensitivity to initial conditions. However, they are confirmed
qualitatively very well by the developed mathematical model and its numerical
simulations, as shown in Fig. 5.
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In Fig. 6, there are presented the Poincaré sections of exemplary irregular
attractors (they are constructed by sampling of the system state at the instances,
when the angular position θ tð Þ of the disk crosses the zero position) exhibited by
mathematical model for u0 = −11.3 V (a), −10.3 V (b), −9.01 V (c), and −8.51 V
(d). The examples (a–b) correspond to quasiperiodic behavior of the system, while
the sections (c–d) indicate the chaotic character of the attractor. Figure 7 exhibits
bifurcation diagrams of the mathematical model—for quasi-statically changing the
bifurcation parameter u0 from −13 to −5 V (a) and from −5 to −13 V (b), con-
firming the chaotic window around the value u0 = −8.51 V and many other zones
of interesting bifurcational dynamics. In Fig. 8 one can observe results of numerical
(a) and experimental (b) investigations of the threshold of the chaotic behavior of
the system (for decreasing control parameter) near the u0 = −8.4 V seen in Fig. 7.
In the experimental investigations, the control parameter has been changed from
−8.3 V to −8.48 with the speed of −0.0015 V/s (the investigation lasted 120 s).

Fig. 3 Three numerical solutions φ θð Þ (black line) compared with the corresponding experi-
mental data (gray line) (u0 = −10.8, −8.0, and −6.5 V, for subfigures a, b, and c, respectively)
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Then the same condition was reconstructed during numerical simulations. One can
notice 0.05 V of difference between the borders of the chaotic window observed
numerically and experimentally.

6 Concluding Remarks

In the paper, there have been presented the results of the preliminary phase of the
larger project aimed in numerical and experimental analysis of different configu-
rations of a pendulum driven by an electric motor. In the current stage, one
developed a mathematical and simulation model of real physical object being a
physical pendulum excited vertically by a crank-shaft-slider mechanism, which is
driven by a DC motor.

Fig. 4 Three numerical solutions ωf θð Þ (black line) compared with the corresponding experi-
mental data (gray line) (u0 = −10.8, −8.0, and −6.5 V, for subfigures a, b and c, respectively)
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Fig. 5 The chaotic numerical solutions (black lines) φ θð Þ (a) and ωf θð Þ (b) compared with the
corresponding experimental data (gray lines) for u0 = −8.51 V

Fig. 6 Poincaré sections of the attractors obtained numerically for u0 = −11.3 V (a), −10.3 V
(b), −9.01 V (c), and −8.51 V (d)
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Since the initial goal of the project is to develop exact and reliable mathematical
and simulation model of the system, we take into account many details of friction
and damping. We have also treated the parameters controlling the functions
approximating the sign functions in the dry friction model as the parameters to be

Fig. 7 Bifurcation diagram with constant in time input voltage u0 as a control parameter—for
growing (a) and decreasing (b) bifurcation parameter

Fig. 8 Numerical (a) and experimental (b) investigations of the threshold of the chaotic behavior
of the system (for decreasing control parameter)
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identified from the experimental data. It resulted in a new resistance model rather
than in a smooth approximation of the sign function. But this new model leads to
better simulation results both in the sense of accuracy and speed of simulation. The
second aspect results from the avoidance of stiffness of the differential equation of
motion typical for smooth approximation of the sign function.

It should be noted that the a priori knowledge about the system was very poor
including the knowledge about the DC motor and the gear transmission. But only
three experimental periodic solutions were sufficient for developing a mathematical
model mapping the dynamics of real system very well and allowing for reliable
numerical simulations.
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