Chapter 9

Plates and Shells

Section 9.1 deals with shallow shells and plates with initial imper-
fection. The mathematical model is derived, and governing PDEs
are reduced to ODEs. Reliability of the obtained numerical results
is studied. Chaotic vibrations of spherical and conical shells with
constant and variable thicknesses have been examined.

In particular, the spatio-temporal chaotic dynamics and control
of chaos have been analyzed. Vibrations of flexible axially-symmetric
shells are studied in Section 9.2. The mathematical model has been
derived, and supplemented with boundary and initial conditions. The
FDM and computational algorithm are presented. The method of
relaxation has been described and then applied to study the shell
vibrations.

Problems devoted to dynamical stability loss including stability
criteria, and scenarios of transition from periodic to chaotic vibra-
tions are analyzed. Then, the shell vibrations under non-uniform
harmonic excitation are studied including discussion regarding the
existence of Sharkovsky’s periodicity series. Control of shell chaotic
vibrations using the continuous harmonic local force and the har-
monic torque is addressed.

Then, the wavelet-based analysis of chaotic shell vibrations is pre-
sented. Numerous novel chaotic phenomena are detected and studied.
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460 Deterministic Chaos in One-Dimensional Continuous Systems

9.1 Plates with Initial Imperfections

9.1.1 Mathematical model and solutions algorithm

In this chapter, we consider a shallow elastic shell (Fig. 9.1), which
can be treated as a plate with initial imperfection (this will be
discussed later), located in a closed 3D space of R® with curvilinear
system of coordinates o, 3,v [Kantor (1971)]. We assume that Lamé
parameters A, B and radii R}, Ri2. Rj of the shell mean surface are
continuous with their first derivatives regarding the functions a, 3.

In the given coordinates, the shell as a part of the 3D space is
defined as follows: Q = {a, 8,7/(a, 8,7) € [0,a] x [0,] x [="/2," /a]}.
The derived PDEs governing nonlinear dynamics of shells (Fig. 9.1)
are obtained on the basis of the following hypotheses: shell fibres are
one-layer, made of an isotropic, homogeneous and elastic material,
and the Kirchhoff-Love hypothesis holds.

The associated variational equation has the following form [Kan-
tor (1971)]:

Fig. 9.1 Computational scheme of a shallow shell,
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- [q_%(meus)] inds = 0. (9.1)

[(AF)* (4L (F, F‘)]}ds

where

OPw PE_, Pw  9F | w PF
da? 9p32 dad3 0adp = 9B da?’

In order to solve Eq. (9.1), in which the deflection function @ and
stress function F are independently variated, we cannot apply the
Ritz procedure directly (equation does not have the form of func-
tional variation being equal to zero). In order to find the approxi-
mated value of elements @ and F, we take the coordinate sequence
wi(a, B) and ;(a, 3), satisfying the same requirements as Eq. (9.1).

In order to find @ and F. the systems of functions
{wij(z,y). vij(z,y)}, i, = 0,1,2..., should satisfy the following
five requirements:

1. @ij(x,y) € Ha, ij(x,y) € Ha, where Hy is a Hilbert space,
which is called the energetic space;

2. Vi, j functions @;;(x,y) and #j;(x,y) are linearly independent,

continuous with their partial derivatives to fourth-order inclu-

sively in the space €;

wij(x,y) and 1;;(z, y) satisfy the boundary conditions;

4. pij(a.y) and ¥;;(x, y) are compact in H 4:

e
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5. @ij(x,y) and ;j(x,y) should represent M first elements of the
full system of the functions:

My My
w=) wuwi@p), F=) wnde@ph) (92)
i=0 i=

The approximating solutions have coefficients #;(f) and y;(f),
which are time-dependent functions. Substituting relations (9.2) into
Eq. (9.1), carrying out the variational operation, and comparing to
zero terms standing by 0z;, 67;, we get the following system of ODEs
for #;(t) and 7;(f):

K (&x + eix) + Bk + Cipylp + DikpTryp = Qido.

1
Cpimi + E,,Jy] + EDpkikai =0, (93)
8 Ri=1,2: s s s o J=1 2y sy T

In the polar coordinates with axial symmetry w = w(r), ¢ =
o(r), a =r, B=40,ds=2nrdr, and the operators take the form
@~ 1d o 1dF 1do d*F

Far 7 s tiwr o 04

A
Substituting 7 by ap in operators (9.4), and carrying out the stan-
dard transformations (and after division by 27 Eh3/a'), the system
is transformed to its counterpart non-dimensional form. In order to

reduce Eq. (9.3) to the non-dimensional forms, the following quan-
tities are introduced: @ = w/h, & = xi/h, @ = Fm, ¥i = B3

h= M0 b= k), F = BRF, =tr, & =¢/r, 7 = /52,

q= q%a, where w is the deflection, F' is the stress function, t is
time, £ is the damping coefficient, a is the dimension of the square
shell, respectively; h is the thickness of the shell, g is the Earth accel-
eration, v is the material weight density, v is Poisson’s coefficient for
the isotropic material (v = 0.3), E is elasticity modulus, wy is the
initial imperfection. Next, bars over the non-dimensional quantities
are omitted.
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In the case of axially symmetric deformation of the shallow rota-
tion shell of thickness h = ho(1+ cp), the coefficients of system (9.3)
take the following form

1
Ky, = / (1 + cp) wiwypdp,
0
Ny = - 1 2
e /O (1+ cp)® [AwiAwy — (1 = v) L (w5, wy)] pdp,
1
Cip = —/0 [Axdp + L (wo, dp)] wipdp,

1 1
Dijp = — /0 w; L(wy, wp) pdp, Qi= / wipdp,
0

1
1
Eyp== [ T3e 180i00 — 1+ 0) L gy, ) i
(9.5)
Solving the second equation of system (9.3) for y;, we get
1
_ |1 -
vi = [Ejp G+ §(EjplD,,i.1:,-)s] Zs. (9.6)
Multiplying by K~ the first equation of (9.3) and using notation

&; =1, the problem is reduced to the first-order ODEs of the form

= —&ri+ [Killcij + (Ai_leksms)i] "

_K,j;-lBksxs + ‘J()(E )Ki;ley (97)
Ty =y,
Lhke=1,2.cc,m pji=12 ..., m

The so far introduced transformation has been possible since
matrices K Jcl and E‘J-"p1 exist if the coordinate functions are lin-
early independent. Equations (9.7) with the initial conditions z; = 0,
& = 0 for t = 0, have been solved with the fourth-order Runge-Kutta
method.

We consider further the axially symmetric deformation of closed
shallow rotational shells and circled plates subjected to uniformly
distributed load being normal to the mean shell surface. In polar
coordinates and in the case of axial symmetry we have: w = w(p),
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Fig. 9.2 Surfaces of structural members: (a) plate; (b) cone; (c¢) sphere.

F = F(p),a =p, 3=0,ds = 2mpdp, and the thickness is defined
by the function h(p) = ho(1 + ¢p). The mean shell surface is defined
by the initial deflection wy = —hR (1 —c1p— (:2p2), K = %, where
H is the full shell height over a plane (see Fig. 9.2).

For ¢; = 1, co = 0 we get a conical shell [Fig. 9.2(b)]; ¢; = 0,
¢9 = 1 corresponds to a sphere [Fig. 9.2(c)|; for k = 0 we deal with a
plate [Fig. 9.2(a)].

Approximating function for four types of boundary conditions are
shown in Table 9.1. In order to investigate vibrations of a shallow con-
ical shell, we consider it as a plate (Axp = 0) with initial deflection:
wy=—k(1—p), k="/,, , and we apply the coordinate functions
given in Table 9.1. Each of the formulas of (9.5) can be presented by
a sum of integrals of the following form

(2y)!(x — 1)1

B 9.8
(x+2y+ 1)1 (O

1
I(z, y)=/0 p(1—p*)dp =

and for four types of the boundary conditions applied, the coefficients

of the system (9.7) take the form:
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Table 9.1 System of approximating functions for boundary conditions.

?,(p)
w,(p)
(I_p.)Hl (l_pl)t

movable clamping fixed simple support

P Ll ——n

fixed clamping movable simple support

l— 2y 1+ e = — = — ¥}

C=e qm £
o]e]eo

L. Unmovable clamping

KW _ 1 (4 + 2i + 2k)!!
ik : & =
6+2i+2k  (7+ 2+ 2k)I’
N,-(,:) _ 4+ 1)(k+1) 1 { ik
; 31-v?)  li+tk+1 |\ (i+k)i+k+1)
¥ 3c? [ 6ik 1 e
20i+k+2) [(i+k)(i+k—1) 2 ]}
3¢(2i + 2k — 4)!! (L5 — (1 ) ,
i+ 2k + 31 ”)(”’“)(”k—l)l}’

1
Cy) ==2(p+1)

H : 2\i+p+l ! i+p
g —/0 (1 =77 d7‘+2p/ r?(1-7?%) ’dr),
0

1 . .
EW = 4ip[(G+p—1) (1 + ) — 2jp)

( 1 c c?
X\ 3 = s & 3
J+p—-1 j+p-1/s J+P)

M _ s ' :
Dikp_4(l+1)(k+l)p(i+k+1)..-p(’i+k+l7+1)

1

Qi= T2 (9.9)
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2. Movable clamping
2 1)
K.Sf’ = I(i(lt)’ Ni(k) = i(k J
1 : 2
o =21 plap—1)- / 21— e QP =@,
0 0

pJ

g® =—16(j+1)(P+1){(j+p+1)(j+p)(j+p—1)
6jp l—l/]

7
c? [ B
TG NG+ (GHnG+p-1) 2
@+2-N
—Cm[mw A=v)(G+p)G+p 1)]},
2 _ 4(i+1)(k+1)(p+1)

Dik} —a . .
P itk+p+)(i+k+p+2)
( P (9.10)
3. Unmovable simple support
3 (1
K =K oy
2+c(4+3c) =1
6(1—v) ’ '
Ngt=q a8 oy kegii=g k=i,
15(1 —v)
(1)
NiZi -1 a
1 (3) _ A (3) _ pl
Ci(s) = Ci(i)l.p' fo;)) 1 Dlg—)l,k—l,p’ Q" =@, Ej =B
(9.11)
4. Movable simple support
: - 4 3) 1) _ ~(2)
1‘1:(:) s Ki(i)l.k—l’ Ni(k) = Ni(k J Cip = Vi-1p 12
2) (4) (1) (4) (2) Lt )
Dz(:,); = DE—l,k—l.p’ Qi . Qi-l’ Ejp - EJ’V &

As it has been already mentioned, once we investigate the spher-
ical shell we treat it as a plate with the initial deflection wp =
—k(1 — r2). For four types of boundary conditions shown in Table
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9.1, the coefficients (9.7) differ from the case of the conical shell only
by Cjp:

Unmovable clamping: Cf,,l ) — —4%})-&%}{’)—'!.

Movable clamping: Cgf) = 41% (i+1)(p+1) F(i:—i);ﬂ'

1.
2:

; B _ )
3. Unmovable simple support: Cyp = Cilip
4.

Movable simple support: C’l-(: ) = C,-(E)l Pt

The transversal uniformly distributed harmonic load is g =
qosin(wy t), where go is the amplitude of the harmonic excitation
and wy, is a frequency of the excitation.

9.1.2  Results reliability

In order to study PDEs governing dynamics of the mentioned struc-
tural members, we introduce mode shape functions and obtain ODEs
of infinite dimension. In order to get correct interpretation of the
obtained results, the following remarks should be taken into account.
When we investigate any continuous system, instead of infinite set of
ODEs, we take a truncated system of finite dimension. It is assumed
that by increasing a number of equations, we find a threshold begin-
ning from which a further increase in the number of equations does
not yield anything new in the system behaviour. This approach is
also motivated by an occurrence of finite dimension of the system
attractor. However, it may happen that an improper choice of basis
functions, which serve to reduce PDEs to ODEs, effects the corre-
sponding system of ODEs, which may have attractors different from
that of the original system.

This feature may occur, for instance, in the case of a 2D equation
governing dynamics of heat convection. The Lorenz system [Lorenz
(1963)], presenting a three-mode truncation of the derived approxi-
mated PDE, demonstrated complex dynamics including chaos. How-
ever, an increase in the number of modes yields first an irregular
increase in chaos, and hence its decrease. For sufficiently large num-
ber of modes, chaos vanishes. In the work [Curry et al. (1984)] it has
been shown that for large Prandtl numbers & in the considered 2D
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Boissinesque convection there are critical values of the Rayleigh num-
ber Ra implying two- and three-mode vibrational motion, whereas
with further increase in Ra, the system exhibits a periodic one-
frequency convection. The illustrated example shows that in order
to get qualitatively true correspondence between the original and
truncated dynamics obtained by the use of either Bubnov-Galerkin
or Ritz approaches, we need to take into account a sufficient number
of modes. Let us investigate the problem of estimating the num-
ber of modes in the Ritz procedure using an example of vibrations
of spherical and conical shallow shells being geometrically nonlinear
and having a constant or non-constant thickness, and being bounded
by their contour. The applied load (uniformly distributed along the
shell surface) has the following form

q = qosin(wpt). (9.13)

We consider the vibration charts associated with shells of & =3
and k& = 5 (Figs. 9.3 and 9.4, respectively) depending on the

magnitude of control parameters {qo,w,} for different number of

3

g g 5 7
(d)y n=3 (e) n=2 (Hn=1

Fig. 9.3  Charts of control parameters {qo,w; } of the conical shell for k = 3 and

for different n.

Plates and Shells 469

Wy

(f) n=1

IFig. 9.4 Charts of control parameters {qo,w,} of the conical shell for k& = 5 and
for different n.

partition terms n = 1 — 7. Further increase in the number n in (9.3)
has not changed the charts {go, w,, } qualitatively. For n = 1 (Fig. 9.3),
the chart differs from the remaining ones, i.e. it presents only bifur-
cation zones and harmonic and sub-harmonic vibrations with wp and
wy /2, without any chaotic zones. Increasing n yields new zones of
bifurcation and chaos.

Similarly, the chart (k = 5) for n = 1 strongly differs from the
remaining ones, since an increase in n yields different zones becom-
ing similar, i.e. the converging sequence of vibration character is
observed. For instance, the sub-harmonic zone is the same for all
n =2, but for n = 2 it is shifted to the right. Chaotic zones become
smaller while increasing n, but the separated parts do not change
starting from n = 4. Both cases of k = 5 and &k = 3 exhibit bet-
ter convergence for high frequencies than low frequencies, and for
frequencies located in the neighborhood of the natural frequency.

We consider two points: the first one for & = 3, n = 6.7 is located
in a bifurcation zone (Fig. 9.5); the second one, for k=5, n = 6.7 is
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Fig. 9.5 Dependence w(0,t), t € [50; 53] and S(w) versus n for the conical shell
(k = 3) with constant thickness (movable clamping).

in a chaotic zone (Fig. 9.6). In Fig. 9.5, w (0,¢) for 50 < t < 53 and
power spectra (S(w)) are reported. Analysis of the given results in
Fig. 9.5 shows that beginning from n > 4 dependences w(0.5 : t) are
close to each other, whereas power spectra coincide in full.

Results obtained for n = 1,2,3 differ essentially from those of
n > 4. Hence, we may conclude that beginning from n > 4, the pro-
cess of bifurcations is reliable for k& < 3, i.e. there exists a convergent
sequence, which can be modelled in the following way

9 = i(t)w; = i 9. = ; ; = in
['w ; ai(t)w; (p)] Juin, {so ; y.(t)wt(p)J o
(9.14)

and this is the best approximation to w" and " in the metric Ha.
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Fig. 9.6 Dependence w(0,t), t € [50;53] and S(w) versus n for the conical shell
(k = 5) with constant thickness (movable clamping).

For n = 4,5,6,7, the power spectrum exhibits a period tripling
bifurcation, and the attracting orbits have period-3. Occurrence of
period-3 orbits yields the occurrence of orbits with periods n =
1.2,3.... The mentioned remarks are applicable to both real func-
tions and maps of an interval into itself. Here, we aim at an analysis of
other orbits, which are exhibited by dynamics of the flexible conical
shells. In Fig. 9.6, the same characteristics as in Fig. 9.5 are shown.
However, in this case we do not observe the previously exhibited
uniform convergence.

For n = 1, we have periodic vibrations; n = 4 corresponds to
the period tripling bifurcation (period-3), where period-1 is defined
by 27/w; for n = 2,3,5,6,7 though we have determined chaotic
vibrations, we deal with different types of chaos. Namely, for n = 2
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we have chaos associated with excitation frequency. For n = 3,5 we
have chaos exhibiting mainly frequency 3w, whereas for n = 6,7 we
have chaos associated with frequency 7w. Owing to this discussion,
we may conclude that a convergence of the Ritz procedure versus a
number of the terms of the series (9.3) essentially depends on initial
deflection parameter k, and on the dynamical regime of the system.

In what follows, we investigate convergence of the Ritz procedure
versus boundary condition type and a shell geometry using an exam-
ple of conical shells supported along their edges and having constant
(Fig. 9.7) and non-constant (Fig. 9.8) thicknesses (h = ho(1 + ¢p))
for ¢ = 0.1, k = 5. We consider a point, which for n = 6,7 is in a
chaotic zone for the following fixed parameters: gy = 2.4, w, = 3.5.

W
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Fig. 9.7 Dependence w(0,1), t € [50;53] and S(w) versus n for the conical shell
(k = 5) with constant thickness (movable simple clamping). w
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Fig. 9.8 Dependence w(0,t), t € [50; 53] and S(w) versus n for the conical shell
(k= 5) with the non-constant thickness (movable simple clamping).

In Fig. 9.7, signals (w (0;¢), 150 < t < 156) and power spectra are
reported. For n = 2, harmonic vibrations with w, occur, n = 3 yields
the first period doubling bifurcation, whereas for n = 1,4,5,6,7 we
have chaos associated with the fundamental shell frequency.

Next, we consider the shell with variable thickness and with the
following fixed parameters: gy = 2.4, w, = 3.57. In Fig. 9.8, signals
(w(0:¢), 150 < t < 156) and power spectra are reported. For n = 2
and n = 3, periodic vibrations with the frequency wp are shown;
n =1 yields sub-harmonic vibrations of w,/5, i.e. the first approxi-
mation of (9.3) yields period-5 vibration, whereas for n = 4, 5, 6 chaos
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(d) k=2 (e) k=1.5

Fig. 9.9  Charts {qo,w;} of the spherical shell for different n.

occurs associated with natural frequency. In other words, beginning
from n = 4, a convergent sequence is observed. Further, all results

are reported for n = 6.

9.1.3 Spherical shells of constant thickness

We consider vibrations of spherical shallow shells with constant thick-
ness, supported on their edges. In Fig. 9.9, charts of control param-
eters {qo.wp} for the shell with k& = 1,1.5,2,3,4,5, are reported.
The chart showing a transition into chaos exhibits rich dynamics
while increasing coefficient k. Analysis of dependence {gg,w),} versus
k shows that for the plate (k = 0), {qo.wp} exhibits only periodie
vibrations under the constraints w (0) < 5 and gy < 100. Zones of
chaos and bifurcations increase with the increase in k, and for k& =1
only two chaotic narrow islands within the harmonic zones appear.

Increasing k > 1.5 yields new zones of bifurcation and chaos.
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Considering deterministic vibrations of spherical and conical
shells with constant and variable thicknesses for arbitrary boundary
conditions and & parameter, none of the known models in its pure
form can describe a transition to chaos of the studied continuous
mechanical systems. The so far mentioned parameters, i.e. gy, wy, k
play a key role in the mechanisms of transition of the mechanical
system into chaos.

For spherical moveably supported shells a new scenario of tran-
sition from periodic to chaotic vibrations has been detected, which
exist also in the case of conic shells of both constant and non-constant
thickness for the same boundary conditions. There appears a new lin-
carly independent frequency and a transition into chaos is carried out
via the series of linear combination of two frequencies and the suc-
cessive Hopf bifurcations. We consider this scenario in detail on an
example of a spherical shell with parameter & = 3. The fundamental
characteristic signal w (0,¢), phase portrait w(w), power spectrum
S(wy), Poincaré section w(w(t 4+ 7)) are reported. In Table 9.2, the
following notation is used: w; = w(t), wir; = w(t + T), where T is
the period of excitation. The reported gy values are called threshold
values, since in between the mentioned ¢ values, the chart practi-
cally does not change. In what follows, we describe the dynamical
phenomena reported in Table 9.2,

I. Vibrations are carried out with the frequency of excitation a; and
they are periodic. Phase portrait presents on invariant set of one-
rotational cycle (gy = 15).

2. Further increase in the parameter ¢o up to ¢o = 15.92 implies
an occurrence of the independent frequency by, i.e. there is two-
frequency motion with frequencies a; and by. Motion is not syn-
chronized, i.e. ‘,i”L = =8.859... is irrational.

3. Increase in gy up to gy = 17 yields the series of linearly depen-
dent frequencies b, = n - by and a,, = a; — (n — 1) by, and this
process continues up to the moment, when the frequencies ay
and by € [by,a,] start to approach each other. After that, in the
spectrum, a third type of the dependent frequency is exhibited:

Cn =T L C2 C2 = a7 — bg, Tn = ap, by, .
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Table 9.2 (Continued)

476 Deterministic Chaos in One-Dimensional Continuous Systems
Table 9.2 Vibration characteristics for different qo.
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4. Then, we observe mutual approach of further frequencies, and

the third type of the dependent frequency vanishes, and period
vibrations, with period-21 occurs.

For the parameter o = 16.4, a period doubling bifurcation for
frequency b takes place.

Further increase in gy = 17.382 implies chaos. Change of gy on
amount of 9 - 1075, i.e. for qo = 17.383, pushes the shell into
stiff stability loss (deflections increase suddenly, approximately in
two times), and the system again vibrates periodically with the
frequency of excitation a;. Here, we may treat this process as
a dynamical stability loss of conical shells subjected to periodic
time loading, which can be understood as a novel criterion for
the dynamical stability loss. Analysis of the existing dynamical
criteria of stability loss of shells is carried out in the reference
[Krysko (1976)]. The reported process of the dynamical stability
loss is considered as the most general, and its properties before
stability loss allow to control the given process.

The spherical shells exhibit narrow zones embeded into chaos,

where the Feigenbaum scenario [Feigenbaum (1983)] has been
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q=17(8)

Fig. 9.10 Dependence wpax(go) and other dynamical characteristics for the
spherical shell (k = 3, w, = 5).

detected. However, only three period doubling bifurcations have
occurred, and further sequence of bifurcations has not been detected
numerically.

In order to illustrate vibrations of spherical shells, in Figs. 9.10
and 9.11, the characteristics wax monitored in the shell top versus
qo for wy, =5, k =3 and for w, = 8, k = 5 respectively are shown.

The Lyapunov exponents play an important role in investigations
of dynamical systems. They give computational qualitative measure
of the stochasticity order. The proposed and developed idea of com-
putation of a series of vibration character of dynamical system [Awre-
jeewicz et al. (2002)] based on an analysis of the power spectrum S(w)
reveals a good coincidence with the evolution of the largest charac-
teristic exponent (LE) named here as A\j(go). In this work, in order to
compute LE the Benettin method is applied [Bennetin et al. (1978,
1979)]. In a chaotic state A\; > 0, and white color corresponds to
chaotic zones in the reported scales/charts.

In Fig. 9.10, window L is presented in the form of a scale, for which
the dependence A\ (qy) (15 < go < 19) is shown, and where four zones
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Fig. 9.11 Dependence wuax(go) and other dynamical characteristics for the
spherical shell (k =5, w, = 8).

of chaos are observed: a (16.1 < gy < 16.5); b (16.6 < gy < 16.8);
¢ (16.9 < gp £ 17.3) and d (17.9 < gy < 18.1), with A; > 0, which
well coincides with the scale of vibrations. Observe that in zone d,
local buckling is observed on the corresponding dependence wy,ax(qo).
Figures include also w(t), w(w), power spectra and space forms of
vibrations for three points A, B,C for k = 5 (point A corresponds
to periodic vibrations, point B refers to bifurcations, point C' refers
to chaos) and two points A, B (point A refers to periodic vibrations,
B is the linear combination of two independent frequencies a; and
by with successive Hopf bifurcations) for k& = 3, which are shown in
dependencies wyax(qo).

Point A corresponds to harmonic vibrations, point B to linear
combination of two independent frequencies, and point C' to chaos.
Analysis of these results in either two points w/(0,¢) or in space w(p, t)
for 50 < ¢t < 54 allows to conclude that the dynamical phenomena
exhibited by the shell do not depend on k in the case of periodic vibra-
tions, whereas observed bifurcations and chaos essentially depend on
parameter k.
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5 7 Wy
(d) k=2 (e) k=1.5 (k=1

Fig. 9.12  Charts {qo,w,} of the conical shell (movable clamping) for different n.

9.1.4 Conical shells of constant thickness

We consider vibrations of conical shallow shells of constant thickness
and with the moveable clamping. In Fig. 9.12, the charts {qg.w,} for
shells with constant thickness and for £ = 1,1.5,2,3,4,5 are shown.
Charts of vibrations character change qualitatively with the increase
in k. Let us compare the charts {qg.w,} regarding spherical and
conical shells. Analysis of the dependence {qy,w,} versus k shows
that an influence of the shell geometry on the character of vibration
increases with the increase in k. For & = 1, in both conical and
spherical shells narrow zones of chaos are located between w, = 5
and wy, = 6. For & = 1.5, both charts display bifurcation zones, which
are qualitatively similar. For & = 2, zones of rational frequencies are
added, but they have a different organization. For k& > 3, an influence
of the shell geometry implies essential differences in the charts for
spherical and conical shells.

Change in the shell geometry has an impact on scenarios of tran-
sition into chaos. The conical shell with & = 5 exhibits also zones

associated with the Feigenbaum scenarios.
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In Table 9.3, dependencies of the signal w (0,¢). 50 < ¢ < 60. the
phase portrait w(w ), the power spectrum S(wp) and the Poincaré
map w(w(t + T')) for the conical shell for k = 5 are reported.

Values of the sequence qq,, and the sequence d are given in Table
9.4, which yield the following convergent sequence

dy = 0n —20m=1 _ 4 66830065.
qo,n+1 — qon

Theoretical value obtained for the function f = (1 — ex?) is equal
to d = 4.66916224. .. . Difference of theoretical computations with
the numerical experiments for the conical shell is of 0.018%.

Next, we consider the dependence wy,, (0) versus g for wp = 5.61
and scales of bifurcations for conical shells k = 3: 5, as well as vibra-
tions of the shell’s surface in time, signals w (0,1) 51.25 < t < 53.75.
phase portraits for periodic vibrations, vibrations after the series of
bifurcations, and finally chaotic vibrations (Fig. 9.13).

In what follows, we investigate an influence of boundary condi-
tions on the vibrations character with the example of the conical
shell with & = 5 taking into account boundary conditions of mov-
able clamping and movable simple support (Fig. 9.14). Analysis of
the results shows that the vibrations corresponding to the movable
clamping are more complex than that of the movable simple support.

[n the case of simply supported shells, the interesting phenomenon
of signal intermittency has been detected. Table 9.5, gives the sig-
nal w(t), the phase portrait w(w ), the power spectrum S(w), the
Poincaré map w(w(t +T)), where T stands for the excitation period
(.A.'/, = 3:8).

In this scenario, two period doubling bifurcations are obtained,
and next the intermittency behavior is observed, which transits the

system into chaos.

9.1.5 Control of chaos

We investigate the influence of the shell thickness change ver-
sus boundary conditions and the shell geometry. We consider
shallow conical shells with constant and non-constant thicknesses
h = (1 4+ ep), considering them as plates with initial deflection
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Table 9.3 Vibrational characteristics of the conical shell (k = 5) for different gq.
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Go Signal w(t) Phase portrait Power spectrum Poincaré map
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Table 9.4 Feigenbaum scenarios detected numerically.

n 1 2 3 4 5
Goon  9.605846 11.098 11.77755 11.9204 11.951
dp 2.19579722  4.75708785  4.66830065

Puc39 3 Ve (0g) Rax cep J k=5m,=8

Fig. 9.13 Dependence wyax(go) and other dynamical characteristics for the
spherical shell (w, = 8).

wy = —k(1—p), where k = H/hg. For the given type of boundary
conditions, the approximating functions have the following form

wilp)=(1-p,  @ilp)=01-p)™  (9.15)

We take the load ¢ = g sinwpt and zero value initial conditions.

In Fig. 9.15, {qgo,w,} charts are reported for constant and non-
constant shell thicknesses for ¢ = 0.1,—-0.1,0.2 (k = 5). Here the
influence of thickness changes on the system state differs essentially
from the previously studied case.
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Table 9.5 The vibration characteristics for the conical shell (k = 5) for differ-

ent qo.
qo Signal w(1) Phase portrait Power spectrum S(e ,,) Poincaré map
wiw) w(wir+ 7))
10— 10— = = o s
5 - sk i
i 0 e M bl b QG— Al : A _
1% léf; SE o :c\: e s 4% 04 8"!~
10— 10— Y- T —~ gt
i I
S | T [t N [ -
(a) g
Fig. 9.14 (a) Charts {qo,wp} of the conical shell with movable simple support
and (h) with movable clamping. §
For ¢ = —0.1. a chaotic zone associated with low [requencies
(about 2.5) appears, which does not exist for ¢ = 0.1, ¢ = 0.2 and
¢ = 0, as well as a chaotic zone associated with high frequencies 3
(about 5.5) occurs, which exists for ¢ = 0 and does not exist for
e = 0.1,0.2. It can be seen that the influence of shell thickness change |
on its dynamics depends essentially on the shell geometry and initial
conditions. s
In Fig. 9.16, charts of control parameters {qq,w,} for the conical
shell (k = 5) movably clamped with constant (¢ = 0) and non- -
constant (¢ = 0.1, —0.1) thicknesses are shown. An increase in thick- )
ness in the shell center (¢ = —0.1) yielded new zones of chaos associ- 3 0 $ T » NP
ated with high frequencies and frequencies close to natural frequency | " o il e A ke
for gy > 35, as well as an increase in zones associated with indepen- "'Ji’v 190 20 | S 0 e | 0 1 2 3 4 | % 4 &
dent frequencies is observed. For ¢ = 0.1, on the contrary, zones of . 0 — wFE— sPl;
chaos and bifurcations essentially decreased. & f ' | - ]
In what follows, we analyze spherical shells with k& = 5. At first, ! i . h 0 Lk L a8l |
we consider spherical shells with the boundary condition of movable | 150155 160 | 00 e % 4 &

clamping and with k = 5 of constant and non-constant thicknesses for
¢ = 0.1. In Fig. 9.17, charts of control parameters {go,w,} are given.
Here, the influence of thickness on the shell dynamics is more visible
than in the previous case. The charts imply that shells with variable
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15 25 35
(c) c= 0.1

45 Dy

Fig. 9.15 (a) Charts {qu,w,} for conical shells of constant and (b,c,d) non-

constant thickness (k = 5).

thickness have smaller zones of bifurcations and chaotic vibrations.
The carried out results allow to conclude that by changing the shape
of a transversal shell cross-section, and properly choosing parame-
ters o and w, we may control nonlinear vibrations of the studied
continuous systems.

In order to investigate the vibration character of conical shells
versus the parameter gy we construct the dependence wy,ax (go). In
Fig. 9.18, functions wyax (go) in the shell top are given for k = 5
and ¢ =0, 0.1, 0.1 for w, = 3.5,3.57 and 3.38, respectively. In the
dependence wyax (qo) for go = 1, the first stiff stability loss occurs. In
the neighborhood of gg = 2, there is a zone of the second stiff stability

loss. Critical loads for constant thickness are within the mentioned
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Fig. 9.16  Charts of control parameters {qo,wp } for spherical shells for different c.

interval. The first critical load occurs for the first Hopf bifurcation
(¢ = —0.1) and for the second independent frequency (for ¢ =0, 0.1),
which are depicted in the scales by vertical lines in the vicinity of
o = 1.

9.1.6  Spatio-temporal chaos

[n this section, we investigate the birth of a spatio-temporal chaos
in time. In Figs. 9.19 and Fig. 9.20, the signal w(0,¢) and the deflec-
tion of the mean shell surface in certain time instants for peri-

odic (Fig. 9.19) and chaotic (Fig. 9.20) vibrations for & = 5 and
“p = 3.3 are shown. Besides, there are given dependencies w(p, t)

for t € [151; 154.5] [Fig. 9.19(a)] and ¢ € [167.5; 169] [Fig. 9.20(a)).



188 Determimistic Chaos i One-Dimensional Continuous Systems

Wy Dy
(a) (b)

Fig. 9.17
stant and (b) non-constant thickness (k = 5).

(a) Charts of control parameters {qo,wp} for spherical shells of con-

0 ..'I L ! ! ! | ! L dp

0 l 2 3 4 6 7 8 9
e=0 NEEDEDN | 0 Il | I |
=01 [ | NN N .
e=-0I | 0 | I |

Fig. 9.18 Dependencies wiux(go) and vibration scales for different ¢ of the con-
ical shells.
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Fig. 9.19

Functions w(p,t), w(t) and w(p) for periodic regime.
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Functions w(p, 1), w(t) and w(p) for chaotic regime.
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2. Pinned support of the shell contour
(a) homogeneous BC

or R =L

(b) non-homogeneous BC

0, forr=~b: (9.19)

oP P Pw  vow

E—VE-:O’ w=0, ‘W-F;E =1\/Iosm(wpt), for r = b.
(9.20)

3. Loosely clamped shell contour
o=w =0, a—w=0, for r = b. (9.21)

or
4. Rigidly clamped shell contour
0P i) w

o vy 0, w=0, 55 0, forr (9.22)

Initial conditions
w=fi(r, 0)=0, w' = fo(r,0)=0, 0<t<o0. (9.23)
Top shell conditions

b~ Ar, O~ A; waB+COr% W x20r; w'=x=20; w" =0
(9.24)
FDM and computational algorithm

In order to reduce a continuous system (9.16) to a system with
lumped parameters, FDM with approximation O (A?) will be
applied. Equation (9.16), in the form of finite-difference relations
regarding the spatial coordinate, has the following form

" ;o Witl — Wi . _ D — D
witeEw; = — (r.3 ——27',-A

t

Wit — 2W; + Wi-1 1Y @i — By ®i
¥ ri A2 <(D, . Ti) 2A Ti
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_ Witg — dwigy + 6w; — 4wy +w;_o
Ad

_ Wiy — 2wig + 2wy — wj_g
TiAa il 4qi1

1 1 2 1 1 1
b, . S I (S ,
1+l( A2 2ri:)+<1>,( 2+r?>+¢’_1(_-—2+f)

_ Wit — Wiy (1 Wi — Wi
2A 47‘,‘A ’

(9.25)

where A = b/n, and n denotes a number of partition of the shell
radius. The corresponding boundary conditions are as follows.

1. Simple movable support in a meridian direction
(a) homogeneous BC

@ = 0, w7|+1 = —’U)n_l, wn = 0 fOl’ 7',, = b; (9.26)
(b) non-homogeneous BC

®=0, wiy1=Msin(wpt) —wi_1; w, =0, forr,=Dh.

. (9.27)
2. Pinned support of the shell contour
(a) homogeneous BC
A 2Av vA —2b
Pip1 = Di_y + T‘I’i; Wit1 = oA Wil
wn =0 forr,=0b; (9.28)
(b) non-homogeneous BC
. 1
Py =Diy + %i; Wiy = Mo sm(w,,t)l— (KEV- 7is) wi—l;
(az + z¢x)
w, =0 forr, =0
9.29
3. Loosely clamped shell contour : )
Pp=0; wppr =wy—1; wp=0 forr,=0>h. (9.30)
4. Rigidly clamped shell contour
2Av
Gi1=i1+ Ti; Wpy) = Wp—1; wp =0 forr, =0

(9.31)
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2. Pinned support of the shell contour
(a) homogeneous BC

0% 8 o w—p Zw, viw
or b TS 5TV Eer

(b) non-homogeneous BC

0, forr=~0b: (9.19)

e @ Pw  vow !
ﬁ—uz =0, w=0, W-F;g = Mysin(wpt), forr =b.
(9.20)
3. Loosely clamped shell contour
é=w =0, Z;L:-—-O, for r =b. (9.21)
4. Rigidly clamped shell contour
0P i) ow
—_—— — — = —_— = b. .
o 4 0, w=0, o 0, forr (9.22)

Initial conditions
w=fi(r, 0)=0, w' = fo(r,0)=0, 0<t<o0. (9.23)
Top shell conditions

P~ Ar O ~A wxB+COr%: wx20r; w'=20; v =0
(9.24)
FDM and computational algorithm

In order to reduce a continuous system (9.16) to a system with
lumped parameters, FDM with approximation O (A?) will be
applied. Equation (9.16), in the form of finite-difference relations
regarding the spatial coordinate, has the following form

" Jont _w,-.H — Wi—1 i - ‘I)i+1 —®;
Wy +EWy = 2A (1"3 2r;i A

t

Wigr — 2w +wicy (o 1\ Ripr — @i P
+ r; A2 <(p1+ri) 2A Ti
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_ Wipg — dwiy + 6w; — 4wy + wi—o
Ad

_ Wi — 2Wit + 2w — wi—g 4
7'¢'A3 91.»

11 2 1 11
@1 e e ¢ =2 — . ——ee —_—
H ( A? 2r,~A) ik (A2 § r?) +Bin1 ( Az 2riA)

_ _w,-+1 — Wi (1 _ Wiy — Wi
2A 47‘,‘A '

(9.25)

where A = b/n, and n denotes a number of partition of the shell
radius. The corresponding boundary conditions are as follows.

1. Simple movable support in a meridian direction
(a) homogeneous BC

=0, wyp1=-wu—1, w,=0 forr,=0b (9.26)
(b) non-homogeneous BC

P =0, w41 = Mysin(wpt) —wi_1; w, =0, forr,=>.

. (9.27)
2. Pinned support of the shell contour
(a) homogeneous BC
_ 2Av vA - 2b
Pit1=Pi—1 + T‘I’i; Wit1 = gy A Wi-1;
wy, = 0 fOl' ' = b; (9.28)
(b) non-homogeneous BC
/] 1 = L. - e Neow
Dy =0,y + —2?111'; Wiy = Mosm(w,,t)l (E‘ru . ) w’-l;
(a2 + 7#%)
wy, =0 forr, ="
9.29
3. Loosely clamped shell contour .
P, =0; wpp1 =wu—1; wp=0 forr,=0>h. (9.30)
4. Rigidly clamped shell contour
> 2Av
i+l Zic1t i Wngt =Wpo1; wp =0 for r, =b.

(9.31)
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Initial conditions follow
Wy = fl (Tka 0) =0, w,n = f2(7'k30) =0,
(0<k<n), 0<t<o. (9.32)

If we neglect small terms and change the differential operators by
the central finite-difference once for r = A, the following conditions
in the shell top are obtained:

4 1 8
Py =Py —20; wy = gwl — =wy; W-] = -w] — -wWy + ws.

3 3
(9.33)

9.2.2 Method of relazation

The idea of finding a solution to stationary problems via non-
stationary problems have been used for the first time in the 1930’s
of the previous century by A. N. Tichonov [Tichonov and Samarskiy
(1977)]. For the problems of stationary supersonic flows acting on the
bodies, the relaxation method was applied by Godunov, Zabrodin
and Prokhorov in 1961 [Godunov et al. (1961)]. In 1947, Lyusternik,
in order to solve the Poisson equation using the relaxation method,
applied FDM [Lusternik (1947)]. This method has been applied to
nonlinear problems of shells by Feodosev [Feodosev (1963)].

In this section, we propose a modification to this method to solve
Poisson equation for the Dirichlet problem. In what follows, we illus-
trate the application of this method with various modifications to
nonlinear problems of the theory of circle shallow shells within the

Kirchhoff-Love model.

9.2.2.1 Main Idea

The main idea of the relaxation method for solutions to numerous
problems in mathematical physics relies on the consideration of an
unsteady process generated by initial conditions in the limit reaching
a steady state, which yields a solution of the associated equilibrium
system configurations. The results are obtained fast and in a simpler
way than using the method based on direct computation of the equi-
librium states. Let us consider the Dirichlet D = {0 < 2 x3 < 1}
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problem of the Poisson equation on the square defined as follows
Pu
m = %7 =@(z1,23), 0< a4, 9 <1 (9.34)
ulgp = U(s),
having the boundary D, where s is the arc length along the border
@D, and the functions ¢(z1, z2) and (s) are a priori given. We
formulate the problem (9.34) in the counterpart form

Az zoUmn + /\x2x2 Umn = @ (.'L‘l'm,:rzn), mn=12..., M-1,

Um n‘@D = Y(smn),

where Ay, |, Ay,, are differences of a second-order. e

Let us give a physical interpretation of Eq. (9.34). Solution
u(zy, x2) to the problem (9.34) can be interpreted as a tempera-
ture (not dependent on time) in a point (@1, @2) of the plate in a
heat transfer equilibrium. Functions @(x1,22) and 7)(s) govern the
temperature distribution of the heat source in the plate, and the
temperature distribution along its border, respectively.

We consider the following supplemented non-stationary problem
regarding the heat distribution

oU
A o V2U = KP(.'L'l,IL‘ )v
ot ) (9.36)

UIBD - w(s); U(l‘],.’L‘g,O) = 'l,/}()(.'L'l,.’L‘z),

where ¢ and ¢ are the same as in problem (9.34), Yo(zy, z3) is
arbitrary given in time instant ¢ = 0, i.e. we define the initial con-
ditions, and V?2(.) = %—2%2 - 6—2(52 is the Laplace o . Since

= P perator. Since the
heat source ¢(x, x3) and the temperature on the border ¥(s) do
not depend on time, we may expect that the solution [/ (21, z2,t)
will be changed more slowly in time. The temperature distribution
U(zy, x2,t) for t — oo tends to the stationary temperature distri-
bution u (21, 22) governed by problem (9.34), i.e. in the case of non-
stationary parabolic problems the information can be transmitted
only in direction of time increase. Therefore, instead of the stationary
problem (9.34) we may solve the associated non-stationary probler;l
(9.36) in time ¢ using the relaxation method until the soll£tion stops
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to change in a priori given interval of stationary problen?s. This ?s
the main idea of finding solutions of required accuracy. Owing to this
observation, instead of problem (9.34) we solve problem (9.36) and
instead of the difference scheme (9.35) we consider and define three
different schemes to solve problem (9.36). B
We are mainly oriented toward the following simple explicit dif-

ference scheme:

1 » ' . T
—(uf:r} - u;’n n) = ’\Ill‘lum nt ’\32172“mn ‘P(:Ll.m ny b2 n)’
0

u‘?nt: lap =¥ (Smn), U = Yo(T1,,T2,,) (9.37)

In parallel, we define also the following simple implicit difference

scheme

l( ?n+r: — ufnn) = /\mlzlufntll = Lp(CL']”m,l'Zn)’ (938)
T
uﬁman = Y(Smn), u?"" - wo(l‘l,rmmzn)’

as well as the following scheme of variable directions
1 -
l(U-mn = Ugm) — 5 [Axl,szmn + AxgmgUgl:m =~ ‘P(ml.m,x'z,n)] )
=

1 1

—(U,’:;l = 0""1,) 8- [Azlmlﬁmn + Aa:gzzzuvlr,;’;l - So(ml,mzzn)] )
-

2
oD = ‘P(Sm-n)v U'r(:]‘n = ‘I’O(ml,m'mZ.n)-
(9.39)
We assume that Wo(z1,,,22,) is defined in a way to satisfy the
following relation on the border

Uo|OD = U(Spmn). (9.40)

P
Computation of UP! = {ULH'} on already known UP = {Uhn}
via the scheme (9.37) is carried out using the explicit formu‘las. Com-
putation UPH! = {U,':ltl} via scheme (9.38) requires solution of the

following problem

U (9D = Uy

1 1 _ l P
A“UP.H' -+ A_-m;,:QUﬁ;:;I = ;Uz;;: = ‘P(m],sz.n) TUmn,

mn

(9.41)
yr+! |[0D = ¥(Smn)-

mn
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However, this problem is not simple with respect to the ini-
tial problem (9.35). Therefore, there is no rational motivation to
apply the implicit scheme to carry out the approximate computation.
Finally, computation of UP*! = {UP*1} based on known U? — {Uhn}
via scheme (9.39) can be realized in few stages. At first, they are
realized in the direction of axis oz to compute solutions {U,,,} of
one-dimensional problems for each fixed n, and then the similar-like
computational process is repeated in the direction of axis oxy in order
to compute solutions { U,’;,J,’,I of one-dimensional problems for each
fixed m.

A number of arithmetic actions is proportional to a number of
unknowns. Consider the difference

52,,, = Urem il Umm (942)

between the mesh function U? = {Un} and an exact solution U/ =
{Upn} of problem (9.35). Let us compute a condition for which the
error egm of solution UZ,, of the non-stationary problems tends to
zero with the increase in p, as well as the character of this tendency
goes to zero. Let us take an optimal step 7 and estimate a volume of
computational work required to decrease the norm of the initial error

0
o = \110(3:1,1!1;-7:2,n)1 (943)
for a given number of times.

9.2.2.2  Ezplicit Scheme of Relazation

Solution {U,,,,,} of the problem (9.35) satisfies the equations

1
"(Unm an Umn) = Al‘]IzU'In,n + A;,;2;,;2 U,m, — tp(:l‘lym,.'l:gm),
T

Upnn 10D = ¥(Smn), Unn = Upn1. (9.44)

Taking into account the so far given equations, error ehn can
be estimated in Eq. (9.37) step by step via the following difference
problem, where also Eq. (9.42) is taken into account:

1
+1 =
—(Efnn - elr,nn) - Allifzefnn i Alr'zil‘zfrp%n'
T (9.45)
1 0 . P
Efntt laD =0, Emn = \Il()(ﬂ»l.ma-LZn) — Umn.
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Observe that the mesh function €%, for each pi(p = 0,1,...,)
takes zero value on the border. It can be treated as an element
of a linear space of functions defined on the mesh (z1,,,22,) =
(mh,nh,m,n =0,1,..., N), and taking zero values in points on dD.
We define the following norm in this space:

7] = (Z |ae,m|2) N (9.46)

mun
In order to solve (Eq. 9.45), we apply the following finite Fourier
series
e =Y (e M) U, (9.47)
TS

where ¢, are the coefficients of the series of initial error £ = {9}
of the finite Fourier series, and the numbers \.; are defined in the

following way

=1— 0 (sin? 1T 4 sin? T 9.48
/\r_‘,—l—ﬁ(am 2M+sm 2M)' (9.48)

Numbers chy = ¢4\l are coefficients of the development of error
e? = {eh.} into the Fourier series via the orthogonal basis g(rs),

Therefore,

1 1
12 = (X lenat)* 10 = (Clensl?)* . (949)
Finally, we get

”5"“ < ooz [prs|)P. (9.50)
g

. o
Note that 0 can be given to satisfy the equation &0 = w"*),
where (', ') is a chosen pair for which

max |Ars| = |Avy| . (9.51)
rs

i.e. lim ||e?||/||°]| = 0, and max |Aps| =< 1. Maximum decrease
P rs
for 7, where max |\,s| — min, is estimated from Eq. (9.48):
rs

8 o, 87 .o T 9
Neft =1 — FCOSOW, Aright = 1 — 7S oot (9.52)
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Fig. 9.21 A scheme of 7 estimation.

Increasing 7, beginning from 7 = 0, we initiate the movement of
these points into left (see Fig. 9.21). This process ends when
—Aleft = Aright- (9'53)
Optimal value 7 = h?/4 is yielded by Eq. (9.49):
1 _ 2M?
In(1 — 2sin®%7) T2

Pz = (9.54)

9.2.2.3 Method Limits

The so far described methodology and error estimation are appli-
cable to study difference schemes approximating other boundary
value problems for elliptic equations with variable coefficients and
with curvilinear boundaries. It is necessary that the operator —Ay =
—(Agyay + Azyay) occurring in scheme (3.1.2) should be self-jointed,
and its eigenvalues y; should have the same sign:

0 < pmin < pj < pmax. (9.55)
9.2.24  Shells with Finite Deflections

The developed algorithm and programs package allow to solve numer-
ous problems of static and dynamics of axially-symmetric shells. The
problems of statics is treated from the point of view of dynamics,
and the Feodosev method [Feodosev (1963)] has been applied being
a variant of the relaxation method. The method is based on the fol-
lowing approach: for ¢ = =, the dependencies {gm, wn(t)} are con-
structed, where m = 1,2, ... denotes numbers of the load values for
which the solution via the mentioned relaxation method has been
obtained. This allows for computation of q(w) and analysis of the
stress-strain state of shells. We follow here the reference [Valishvili
(1976)], where the iterative relaxation method has been illustrated
and applied. The functions ¢(w) constructed via the mentioned algo-
rithm (curves a) and via the method proposed by Valishvili (curves b)
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Fig. 9.22 Shell with fixed contour (¢ = qo, € = 1).

[Valishvili (1976)] are shown in Figs. 9.22-9.25. Observe that the
solution proposed by Valishvili (Fig. 9.23) does not yield either upper
or lower critical load values, since both load and deflection are not
defined uniquely. On the contrary, the proposed dynamical approach
allows to estimate the critical loads accurately, and hence to pre-
dict buckling of shells. The occurred loops have the following origin.
The given characteristic gp(w) is constructed for the shell center,
whereas the remaining points of the shell radius behave on its own
way, i.e. the shell stability loss occurs not in the shell center, but
in its quadrants, hence the shell center versus the load describes the
mentioned loops. The reported results not only validate the high effi-
ciency of this method, but also authenticate its wide applications to
solve problems of statics.

9.2.3 Dynamical stability loss
9.2.3.1 Criterions

The proposed algorithm and the method of computations allow to
investigate the stress—strain states and the stability of the already
mentioned wide class of static/dynamic problems of shells. It is well
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Fig. 9.25 Shell with simple movable contour (¢ = qo, € = 1).

known that shell structures subjected to transversal load of different
type suffer stability loss. For the dynamical problems of shells we
have a series of criteria of dynamical stability loss, and their analysis
is carried out in the reference [Krysko (1976)]. We consider shells
with parameter b = 4 subjected to uniform harmonic transversal
load ¢ = gopsin(wpt). In Fig. 9.26, the dependence wpax(qo) for the
shell with a simple-movable contour subjected to the mentioned load
action for w, = 0.521 is shown. In the mentioned figure, points a, b, ¢
corresponding to periodic, chaotic and post-critical periodic vibration
are reported, respectively. Point a — go = 0.16212, point b — gp =
0.16213, i.e. the change of gy on magnitude of 1 - 1075 implies a
sudden increase in shell’s deflection (we deal here with a stiff stability
loss). The similar-like investigations have been also carried out for the
remaining types of the boundary conditions, and the similar results
have been obtained in the reference [Krysko (1976)].

While investigating chaotic vibrations, we do not present dia-
grams about orbits, as it is usually done during investigations of
a wide class of two-valued maps into itself, but the vibration scale
is constructed instead. Dependence wpyax(qo), scales of vibrations
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Fig. 9.26 Dependence wwax(go) and other dynamic characteristics for the shell
with simple movable contour,

character and Lyapunov exponents well coincide with each other
approving the validity and reliability of obtained results. When the
largest Lyapunov exponent becomes positive, then chaos appears,
which is also validated by the scale of bifurcations and Wnax (90)
[Awrejcewicz et al. (2006)], where a series of stiff bifurcations is
observed (dynamical stability loss). For the given points on the func-
tions wmax(qo) a surface w(r, t), the time history w(0, ¢), the phase
portraits w(w’) and the power spectrum S (wp) for the shell center
are reported (remaining shell points have analogous characteristics).
The shell, from its previous chaotic state, is transited into periodic
vibrations by a sudden buckling jump. The so far described scenario
of stiff stability loss can be understood as the criterion of dynamical
stability loss for the case of harmonic transversal excitation. This is
a novel criterion of stability loss of shells subjected to periodic loads.

9.2.3.2  From Periodic to Chaotic Vibrations

Analysis of nonlinear dynamics of structures plays an important role
in the investigation of vibrations of plates and shells periodically
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loaded taking into account energy dissipation from the point of view
of possible scenarios of transition into chaotic dynamics. In particu-
lar, this concerns investigations of axially-symmetric spherical shells
subjected to periodic loads and dissipative factors [Agamirov (1990);
Goldenveizer et al. (1979): Grigoluk and Kabanov (1978); Krysko
(2003); Nie and Liu (1994); Palmov (1976); Saliy (2001); Schimmels
and Palaiotto (1994); Slawianowska (1996); Soric (1994); Teregulov
and Timergalev (1998)].

In problems of theory of shells, some of the known classical
scenarios have been detected, like Feigenbaum's scenario, but also
their numerous modifications including: modified Ruelle-Takens—
Newhouse scenario, Ruelle-Takens-Newhouse-Feigenbaum scenario,
modified Pomeau-Manneville scenario, as well as novel scenarios of
transition from periodic to chaotic vibrations.

Feigenbaum'’s scenario

We consider vibration of shells subjected to an action of periodic load
q¢ = qosin(wpt) uniformly distributed on their surfaces. We study
possible scenarios of transition of those mechanical systems from
periodic to chaotic vibrations, and we briefly discuss a few hypothe-
ses regarding the mechanisms of transition of the regular/laminar
flow to the hydro-dynamic turbulence. In spite of the earlier pro-
posed Landau hypothesis [Landau (1944)], all other mechanisms are
associated with models of finite dimensions including the Ruelle-
Takens—Newhouse, Feigenbaum and Pomeau-Manneville scenarios.
It should be mentioned that even now there is no general and
unique mechanism of transition into turbulence. We here illustrate
and describe mechanisms of occurrence of weak turbulence exhibited
by transversal vibrations of flexible axially symmetric shells. Tran-
sition from regular to chaotic vibrations via period doubling bifur-
cations is well known and validated by many simple mathematical
models. It is also known that period doubling bifurcations are well
described in the Réssler attractor and many other simple models.
The mentioned phenomenon has been also detected in our problem
of the shell with a simple moveable contour. In Figure 9.27 for the
central shell point, and for the boundary condition (Fig. 9.26) the
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Fig. 9.27  Shell with simple moveable contour: phase portraits, power spectra
and Poincaré maps for different ¢q.
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Table 9.7 Period doubling bifurcation of the axially symmetric shell. o Phase portrait e
w i) i
o
n 1 bifurcation 2 bifurcation 3 bifurcation 4 bifurcation 5 bifurcation 0 »
qo. n 0.1335 0.13522 0.13563 0.135718 0.1357369 Sl 3l L ®
dn 4.19512 4.659091 4.656084 o0

following characteristics for the limiting values of ¢y are reported:
phase portrait w(w'), power spectrum S, db (w,) and Poincaré maps
wy (wy + 1), where T' is the period of excitation.

Table 9.7 allows to get the following convergent series regarding
the estimation of the Feigenbaum constant

0.698
o -]
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0.7046
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g
o
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g

dy = Bom ZW0n1 _ 4 65608466, n =S5,
qo.n+1 — qon
where the theoretical value of d = 4.66916224. The difference between
theoretical and numerical value is 0.28%. Values of series qq,, and
series d, are shown in Table 9.7.

As a result of the vibrational process of the axially symmetric
shell with the simple moveable contour for b = 4, we have detected
the Smale chaotic attractors [Smale (1962)]. The latter ones are also
known as attractors of Feigenbaum'’s type or strange attractors (SA).
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Ruelle-Takens—Newhouse scenario

For a spherical shell with a simply supported contour (Fig. 9.20),
as well as with moving (Fig. 9.23) and stiff clamping (Fig. 9.24) the
classical Ruelle- Takens-Newhouse scenario has been detected, which
we study in more detail here. The fundamental characteristics: time
history w (0, t), phase portrait w(w ), power spectrum S, db(w,) and
Poincaré maps w; (w; 4 7) versus the limiting values of ¢g are collected
in Fig. 9.28. The values of gy are referred to as limiting, since between
two successive values of gy the qualitative picture of dynamical state
remains unchanged. We consider this scenario using an example of Fig. 9.28 Dynamic characteristics of the shell exhibiting Ruelle-Takens-
the rigidly clamped shell contour. Newhouse scenario versus different qo. ‘
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1. Vibrations take place on the fundamental frequency a; of exci-
tation and they are periodic. Phase portrait presents a one-
rotational limit cycle (gy = 0.68).
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Fig. 9.29 (a) Dependence wmax(qo) of a shell with five and (b) four harmonically
excited points.

remaining points ¢ = 0; 2. The load ¢ = ggsin(w, t) is acting in five
points 0 < i < 4, where 0 <7 < n, i,n € N in a neighborhood of the
center, and in remaining points ¢ = 0.

Dependencies wyax(qo) for the first and the second type loads
are shown in Fig. 9.29(a) and 9.29(b). respectively. The first case
is associated with two stiff bifurcations. The first stiff stability loss
occurs while transiting from harmonic vibration to first Hopf bifur-
cation. The second stiff stability loss appears during transition from
chaotic to harmonic vibrations, which is approved by the scale of
signal types exhibiting period doubling bifurcations. In this case, the
dependence wy,,x(go) is smoother, there is a first-order discontinuity
as in the previous case. Scale of signal types exhibits a small zone of
soft bifurcations and there is a lack of chaotic zones. Five period dou-
bling bifurcations have been detected, and the numerically estimated
Feigenbaum constant is 4.67784 ..., and its difference in comparison
with the theoretical value is 0.168%.

For two types of local loads of the shell, the charts in the plane
{q0,wp} are reported (the first type is shown in Fig. 9.30(a), whereas
the second has been presented in Fig. 9.30(b)). In the chart of the
control parameter plane {qo,w,} a large chaotic zone on the high
frequencies is observed, whereas small zones of Hopf bifurcations are
located on low frequencies (there are drops of independent frequen-
cies and their linear combination).

Transition of the local load into the neighborhood of the shell
center yields large zones of regular vibrations, whereas a small zone
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(a) (b)

Fig. 9.30 (a) Charts of shell vibrations on the control parameters {qo,wy } plane
with harmonic excitations in five and (b) four points.

of chaotic vibrations has been shifted into a space of low frequencies.
In this case, drops of independent frequencies and their linear com-
binations do not exist.

9.2.5 Sharkovsky’s periodicity

We investigate vibrations of the spherical axially-symmetric shell
with simple movable support and the shallow parameter b = 4,
with damping coefficient = = 0.1, and subjected to harmonic load
q= (](JSillw’[)f.

Within the chaotic region, windows of periodic vibrations follow-
ing the Sharkovsky order have been detected. We study time histo-
ries/signals in the shell center, phase portraits, power spectra and
Poincaré maps and we aim to trace the behavior of periodic orbits
described in the Sharkovsky theorem. In Fig. 9.31, Sharkovsky order
2+3; 2-5 is exhibited. It should be mentioned that the so-called
Sharkovsky's orders are not associated with each other, but they are
rather detected separately in the whole plane {qg,wo}. The follow-
ing dynamical features have been illustrated: in the Poincaré map a
number of points is equal to the number of maxima in the power spec-
trum; order 2-3 — Poincaré map is divided into two subsets having 3
points each; order 2-5 — Poincaré map consists of 10 points, and the
power spectrum exhibits 10 maxima. The phase portrait has loops,
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Fig. 9.31 Vibrations of shell with a simple movable support exhibiting

Sharkovsky’s orders of 2 -3 and 2 5.
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and their number coincides with the number of points of the Poincaré
map. Those orbits present periodic windows in chaos and their struc-
ture is the same in the whole analyzed set. The mentioned orbits can
be also traced on the phase and modal portraits, constructed for
three phase variables.

9.2.6 Control of chaos

We have carried out control of the circle shell loaded by the uniform
periodic load ¢ = gg sin(w, ) by using two additional types of periodic
excitations:

(1) Local transversal harmonic excitation is applied to five points
8<i<12 where0<i<n:;i,neZ:
(2) Harmonic torque is applied.

Two types of excitations have been studied: fixed frequency
and synchronization of frequencies. We study the system behavior,
when the local harmonic load is applied. The system respouse has
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Table 9.8 Applied surface and local shell loads.

Problem Surface load Local load
1. q=qo-sin(wy, 1) —
2. — q = qo-sin(wy 1)
3. qg=qo-sin(wy,-t) q =0.6sin(0.61)
4. g=qo-sin(wp-t) ¢ =0.6sin(0.7251)
9 q=qo-sin(wy-1) ¢ =0.6sin(0.8861¢)
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Fig. 9.32  Dependencies wyax (qo) and vibrations character scales associated with
five problems (see Table 9.8).

been monitored on the basis of numerical results and reported in a
graphical form, where also the dependencies of the maximum shell
deflection versus excitation amplitude as well as the charts of the
vibration character versus control parameters have been shown using
a color notation. Identification of the system vibration regime has
been carried out with the help of the power spectrum analysis as
well as the computation of Lyapunov exponents.

We consider the function wmax(qo). when two types of the load
act on the system: local and continuously distributed (Table 9.8).
Five numbers of curves shown in Fig. 9.32 are identified by the cor-
responding number of problems given in Table 9.8.
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Natural frequency of the shell is wy = 0.644. One may conclude
that two-frequency excitation does not improve the vibration regime
is seen in the figures (in the last three cases. the system works in
harmonic regimes less than two first cases considered).

In order to investigate the shell behavior under the action of two
exciting loads with different frequencies (problems 3-5 of Table 9.8),
the mathematical model has been constructed and the charts of the
vibrations character for the control parameters {qg,w,} are reported
in Fig. 9.33. All charts exhibit large zones of chaotic vibrations,
while increasing the excitation frequency of the local load implies
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Fig. 9.33  Charts of vibration type versus control parameters {qo,w,} and the
associated number of solved problem.
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Fig. 9.31  Dependencies wyax(qo) and the scales of solved problems for w, = 0.6.

an increase in chaotic zones. As we have already mentioned, in the
case of two-frequency excitation, the system is transited into periodic
vibrations only if excitation frequencies are close to each other. In
this case. on the charts of vibrations (Fig. 9.33) zones of chaos are
located in the vicinity of the frequency of the local load, and this
case has been more deeply studied with the help of dependencies
“'m:nx(‘/ll)'

Namely, in Figs. 9.34-9.36, wmax(qo) have been reported for all
five loading cases. In Fig. 9.34, the 'll!,,mx((](,) curves for problems 1,
2, 3 (wp = 0.6), in Fig. 9.35 for problems 1, 2, 4 (w,, = 0.725), and in
Fig. 9.36 for problems 1, 2, 5 (w, = ().88“) are shown.

[n all cases, the coincidence of two frequencies of the external load
decreases a zone of chaotic vibrations, both independent frequencies
and bifurcation do not appear and the dependence wy,,«(go) becomes
smooth. Area of chaotic zones and bifurcations and independent fre-
quencies decrease, whereas a zone of periodic vibration increases (Fig.
9.35). We study the system behavior, when the second type of the
exciting load is applied, i.e. the periodic load. In Fig. 9.37, the depen-
dencies wyax (Mo) and wmax(qo) as well as the scales characterizing
the signal type for seven problems associated with the mentioned
loading types are reported in Table 9.9.
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Fig. 9.36  Dependencies u max (o) and vibration scales (wy, = 0.886).

The values of wp and M have been chosen to illustrate the shell
behavior in cases: the first point is taken on the boundary between
chaos and bifurcations; the second is taken in deep chaos regime; the
third is taken on the border of chaos and periodic vibrations, and
the last in a zone of periodic vibrations. Let us analyze the case of
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Fig. 9.37  Dependencies wyax(Mo) and wyax(qo) and vibration scales.

Table 9.9 Shell loading types.

No  Continuous load Resistance torque

q = qo-sin (wy - ) —

— M = My - sin (wp, - t)
q=qo-sin(wp-t) My =0.1-5sin(0.859-1)
q=qo-sin(w,-t) M =34 5in(0.859-1)
q=qo-sin(wy-t) My =42 sin(0.859-1)
q=qo-sin(wy,-t) My =255 sin(0.859-1)
M = 9.6 - sin (0.859 - 1)

P S8 220 S B o

q = qo-sin(wp - 1)

chaotic zones (in Fig. 9.38, the following characteristics are shown:
signal w(0,¢), where 1000 < ¢ < 1100, phase portrait w(w'), power
spectrum S(wy), Poincaré map wy(wy7)).

In the beginning, we consider the shell dynamies in regimes where
the shell is subjected to action of only one component of excitation,
i.e. either the continuous periodic load or the periodic torque. Fre-
quency of exciting load is the same in all cases (w; = 0.859). When
the shell is subjected to action of the continuous load, a transition
from periodic to chaotic vibration is carried out via a stiff stability
loss. The analyzed power spectrum (in a chaotic zone) exhibits the
local maximum on frequency w; /2, in spite of the global maximum
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maps of the shell subjected to continuous load and torque actions.
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on frequency wy. In order to control chaos, two exciting forces have
been applied. We consider the case when the exciting torque has
amplitudes My = 0.1:3.4;4.2 and the frequency coincides with the
frequency of the harmonic continuous load. Since the type of vibra-
tions for all these cases is similar, we consider the influence of M for
the mentioned three cases simultaneously. The Poincaré map exhibits
one attractor, whereas the phase portrait presents a continuous spot.
We consider the influence of both exciting load and torque with
A I() = 5.5,

In this case, in the chaotic zone there are drops of periodic vibra-
tions. A transition from chaotic to periodic vibrations takes place via
the stiff stability loss. Contrary to the earlier studied zone, in this
case the chaotic vibrations are changed: phase portrait represents an
attractor of the shape of eight, whereas the Poincaré map consists of
two attractors.

In the latter case, the excitation torque frequency w, = 0.859,
whereas its amplitude changes in the interval of (0.1:9.6). In all cases
reported in Fig. 9.37, besides the cases of the periodic load and torque
(g0 = 9.6, w, = 0.859), the maximum shell deflection curve exhibits
the first-order discontinuity implying the stiff stability loss. Its occur-
rence is approved by the vibration character scales, since this time
instant is associated with a change of the vibration character.

In order to study changes in the system’s reaction on the exter-
nal load, the charts of vibration types in the control parameters
plane {g,,wp} (problem 3-7, Table 9.9) and Fig. 9.39 have been
constructed. Analysis of the obtained results implies that action on
the shell of the continuous periodic load and the periodic torque
with amplitude My = 0.1 with the same frequency of both excita-
tions. the detected chaotic zones are similar to those already shown
in Fig. 9.40(b) for the case of the periodic load.

[t means that the action of additional periodic torque with its
small amplitude does not change essentially the shell vibrations.
Increasing M, implies non-unique change in the chaotic region with
respect to the global chart surface. Namely. in the beginning it starts
to increase monotonously and it practically covers the whole chart
area, then chaotic zone starts to decrease simultaneously shifting
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Problem 3

Problem 4

805 W,

S o e .
I lg:. .39 Charts of vibration types of the shell subjected to continous load and
resistance torque (problems 3-7, Table 9.9).
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Fig. 9.40 Charts of the shell vibration types versus the control parameters
{ Mo, w,}, {qo,wy}: (a) distributed load g = qosin(w,t), (.I:].lnrul load ¢ :
qosin(wpt), (¢) support moment M = .‘/n.\'ilvl(.»‘,,l).‘ (d) distributed I‘N‘l‘(l"l,f—)
qo sin(wyt) and local load ¢ = 0.6sin{wyt), (e) distributed load ¢ = g sin(wy

and support moment, My = 9.6sin(wp,t).
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Table 9.10  Controlling vibrations of the shell using the con-
tinuous harmonic local force and the harmonic torque.

No  Continuous load Local load Torque

l. g =qosin(wyt)

2. 4 = qosin (wy, + t)

3: ‘/ .“\In.\'ill (w’,,/)
1. = r/u.\ill (wpt) q1 = 0.6 sin (.u,./)

.

q = qosin (wpt) My = 9.6sin (wyt)

into an area of higher values of ¢y. Areas of periodic zones appear
only if the frequencies are rational. then the chart exhibits a large
area of bifurcations. Otherwise, an area of independent frequencies
and their linear combinations appear. The increase in the excitation
amplitude (w, = 0.859) implies the increase in the periodic zone
while the parameter ¢q is increased.

Analysis of the charts of control parameters for the first type of
problems (3-5, Table 9.8) and the second type of problems (3-7,
Table 9.9) allows to conclude that in the case of similar frequency
wp = 0.859 of the load and the torque, there exists a vertical zone.
Vqo € [0, 1], corresponding to periodic vibrations. This motivated us
to consider the problems when the shell is subjected to uniformly
distributed periodic load and the local load or the periodic torque
while keeping the synchronized changes if the [requencies of both
excitations (Table 9.10).

In Fig. 9.40, charts of the vibration types for the control param-
eters {qo, wp}, {My, w,} are reported. Analysis of the obtained
results allows to conclude that the synchronization of external loads
shifts the system to qualitatively different type of vibrations. Almost
all chaotic zones occurring in the charts {90, wp}, {My, w,} [Figs.
9.40(a), 9.40(b) and 9.40(c)| have been cancelled. In the case of the
fourth type of the load [Fig. 9.40(d)] the vibrations are periodic.
Only a small chaotic zone has been preserved as well as bifurcation
on low and high frequencies. In the case of the fifth type of loading
[Fig. 9. 10(e)| there exist zones of bifurcations as well as small zones
of chaos, but only on low frequencies.
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Fig. 9.41 Charts of vibration types {qo,wp}, {Mo,wp}.

Similar investigations have been carried out for the shell \jvitll
its contour and the shallow parameter b = 4. Results of the given
investigations are shown in Fig. 9.41. Taking into account the earlier
obtained results, our further analysis has not been carried out so
deeply as it was done for the case of the shell with its simple moveable
contour. .

We have investigated the methods of chaos control, which have
earlier given positive results and they have been applied to the shell
with the simply supported contour. As in the previous case, wo‘hav'e
constructed the charts of the control parameters for the case of uni-
formly distributed periodic load [Fig. 9.41(a)], and for the caso. of
periodic torque [Fig. 9.41(b)] which have been also reported cu?lm.r.
In addition, charts describing shell behavior subjected to periodic
continuous and local load and torque actions have been given. All
applied loads have been shown in Table 9.11 (observe that the phase
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Table 9.11  Controlling vibrations of the shell using the continuous
harmonic local force and the harmonic torque.

Problem  Continuous load Local load Torque
1. q = qosin (wyt) —
2, q = qosin (wut)
3. = M = My sin (wpt)
1 q = qosin (wpt) @1 = sin (w,t — )
5. q = qosin (wpt) My = 0.5sin (wpt)

shift of the local load on the magnitude of 7 means that the local load
works in the anti-phase with respect to the continuons load). Action
of two additional loads yields a benefit. since after their introduction
a decrease in chaotic zones and an increase in periodic zones take
place. Influence of the additional local load is more effective with
respect to energy dissipation as well as from the point of view of
chaos control. The most important observation is that the methods
of control of chaotic vibrations are the same for simple support, move-
able and non-moveable support.

9.2.7  Wavelet based analysis

[t has been shown earlier that a transition from periodic to chaotic
vibrations of our mechanical system has been realized via the Feigen-
baum scenario [Feigenbaum (1978)]. The latter scenario can be vali-
dated by numerical experiments of simple mathematical models. We
have studied the shell with a simply supported moving resistance con-
tour and the shell parameter b = 4. The Feigenbanm constant has
been estimated for the control parameter ¢y, where the bifurcations
take place. The obtained numerical value
qo.n — qon—1

ay = ———— = 4.65608466, n=>5
Q0.n+1 — Gon
well coincides with its theoretical counterpart a = 4.66916224

[Schimmels and Palaiotto (1994)], and the difference is of (0.28%.

In order to study bifurcational and chaotic vibrations of the flex-
ible axially symmetric shallow shells the wavelet transforms on the
basis of Gauss wavelets of order from m = 1 to m = 8 as well as



526 Deterministic Chaos in One-Dimenstonal Continuous Systems

real and complex Morlet wavelets have been applied. For further
research, we have chosen the Morlet and Gauss of m =1 and m = §
wavelets as the most representative and reliable. In order to estimate
the Feigenbaum constant o, we have used the one-dimensional (1D)
Fourier transform, yielding also a 1D information on the relative
input (amplitude) of various time scales (frequencies). Contrary to
the 1D Fourier transform, the wavelet transform on 1D series yields
2D set of coefficients of the wavelet transform W (t,w). Distribution
of these coefficients values in the space (#,w) (time scales, frequency
localization) gives information of the evolution of relative input of
different scales in time, and it is called a spectrum of coeflicients of
wavelet transform or equivalently a wavelet spectrum.

In Figs. 9.42(a)-9.43(c) and 9.44 (a, b) for different values of the
parameter ¢q, the wavelet spectra of 1D signal (i.e. magnitudes of
W (t, w)|) as well as surfaces in a 3D space and their projections on
the surface (£, w) in the form of 2D and 3D wavelets, Poincaré maps,
power spectra and phase portraits are given.

The charts reported in Figs 9.42-9.44 allow to follow the change of
amplitudes of wavelet transformation regarding various scales and in
time, as well as pictures of curves of local extrema on those surfaces
(the so-called skeleton diagrams). In Figs. 9.42-9.44, the abscissa
axis denotes time, whereas the ordinate axis presents the time scale.
Light chart regions correspond to large, whereas dark regions corre-
spond to small values of the energy density |W(t, w)|. Grey color of
charts (Figs. 9.42-9.44) exhibits regions of wavelet transform values
for small time intervals, which are gathered in the second column
of each of the reported Figs. 9.42 and 9.43 in the enlarged window
scale. In the case of the complex Morlet wavelet (Fig. 9.44) such
a window denotes the time interval, for which in the second col-
umn a surface of arguments corresponding to the coefficients of the
wavelet-transformation, is shown (the latter coefficients are complex
numbers).

Analysis of chaotic vibrations of flexible axially symmetric shal-
low shells under action of the transversal periodic load with the help
of the wavelets Gauss 1 and Gauss 8 vields approximated quali-
tative results, and does not describe the whole complex picture of
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Fig. 942 row (a) Shell’s periodic vibrations: 2D wavelet spectrum (Gauss 1),
its enlarged window, and 3D wavelet spectrum (Gauss 1); row (b) 2D wavelet
spectrum (Gauss 8), its enlarged window, and 3D wavelet spectrum (Gauss 8);
row (¢) 2D wavelet spectrum (Morlet), its enlarged window, and 3D wavelet
spectrum (Morlet); row (d) Poincaré map, frequency power spectrum and phase
portrait.

vibrations. The validated description of chaotic vibrations may vield
only Morlet wavelets both real and complex. Our (‘xpvrivm'(-l.\'imws
that in the case of the studied shallow rotational shells the most
suitable for a reliable study are the complex Morlet wavelets. They
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Fig. 9.43 row (a) Shell's chaotic vibrations: 2D wavelet spectrum (Gauss 1),
its enlarged window, and 3D wavelet spectrum (Gauss 1); row (b) 2D wavelet
spectrum (Gauss 8), its enlarged window, and 3D wavelet spectrum (Gauss 8);
row (¢) 2D wavelet spectrum (Morlet), its enlarged window, and 3D wavelet
spectrum (Morlet); row (d) Poincaré map, frequency power spectrum and phase

portrait.

possess good properties of the real Morlet wavelet, i.e. good frequency

localization from one side. whereas from the other side the values of

argnments of the corresponding wavelet-coefficients yield additional
information allowing to visualize the properties of self-similarity on
different scales monitored in a chaotic signal (see Fig. 9.44(b) for
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Fig. 9.44  Chaotic vibrations of the shell using different scales (rows (a), (b) for
¢o = 0.14: 2D wavelet spectrum (complex Morlet), its enlarged window, and 3D
wavelet spectrum (complex Morlet).

qo = 0.14). The mentioned benefit of the Morlet wavelet allows to
win with other wavelets. A Morlet wavelet has the largest number of
zero moments compared with other wavelets, which allows for reliable
and validated description of chaotic vibrations of the flexible shal-
low shells. The complex Morlet wavelet can be also applied in those
cases when we aim at observing possible violations of the uncert ainty
principle. It seems that the study shows that a choice of the wavelet
type depends on the vibration regime, and has its own peculiarity.
Though in quantum mechanics the Pauli wavelets have been mainly
applied, it seems that the complex Morlet wavelet is most suitable
for the problems of theory of flexible structural members including

shells.



