Chapter 8

Panels

In Section 8.1, the rectangular plate-strip under uniformly distributed
harmonic load taking into account physical and elastic-plastic defor-
mations is studied. Various stress—strain relations while cyclic load-
ing are applied. Then a computational algorithm including reduction
of PDEs to ODEs via either the Bubnov-Galerkin Method (BGM) or
the Finite Difference Method (FDM) is described. Different numeri-
cal methods for computation of ODEs are reviewed and discused.
Estimation of Lyapunov exponents (LEs) via analytical and
numerical approaches is illustrated, and the problem of stability of
the studied system is analyzed. Charts of vibrations’ regimes for lon-
gitudinal and transversal vibrations are reported. Convergence and
reliability of the obtained numerical results have been discussed.

Different transition scenarios from regular to chaotic dynamics.

have been detected and discussed. Then the Sharkovsky’s bifurcation
series has been reported. Chaos-hyperchaos and hyper-hyperchaos
phase transitions have been studied with the help of LEs and Lya-
punov dimension (LD). Reliability of the obtained chaotic zones has
been addressed.

In Section 8.2, cylindrical panels of infinite length are studied. At
first, the governing PDEs are formulated with boundary and initial
conditions. Reliability of the solutions obtained via FDM is stud-
ied. The method of LEs computations is presented, and the chaos—

hyperchaos transition as well as the Sharkovsky’s series are detected

and discussed.
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Fig. 8.1 Rectangular plate under periodic load.

8.1 Infinite Length Panels

8.1.1 Mathematical models

We consider nonlinear vibrations of a rectangular plate subjected to
the action of uniformly distributed periodic load (Fig. 8.1).

We take into account two types of nonlinearities: physical and
clastic-plastic deformations (assuming that loading and relief pro-
cesses lie on the same curve, then we deal only with the physical
nonlinearity). We consider a long plate (a < b), and we study the
plate parts in the neighborhood of its short sides, whereas on the
l:vmaining lengths the plate bending is located on a cylindrical sur-
face. We consider a beam-strip of a unit width and having length a.
This approach allows to reduce a PDE to that of only one spatial
coordinate x. The bended plate is supported by a set of elastic ribs
with the same stiffness which are located in parallel to the plate short
side a, and the distance between ribs is ¢. We additionally assume
that the ribs may be only compressed.
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Surface of the transversal section of each rib is F, i.e. the separated
beam-strip has the width F,. = F//¢. The deformations in the middle
beam-strip surface are

Crr = E11 + 2X11,

_ %
X1 = 5x2 * (8.1)
= —aﬁ + 10w 3 + kpw
=5z T2\ oz i
Hooke’s law has the following form
E ‘
Opa = m[el‘l = Egv]‘ (8'2)

where EL =apT +E}r’;. The following notation is further used: ap is
the coefficient of linear material heat extension; 7" is the temperature;
w is the deflection of the middle beam surface; u is the displacement
in the direction of the axis Ox; k. = 1/R, is the curvature regarding
x: h is the beam thickness; v is the Poisson’s coefficient; g is the
Earth acceleration; = is the specific beam material weight; 5}'; is the
plastic component per loading moment.

Owing to the Birger method of variable elasticity parameters in
the form (8.2), we get a relation between stresses and deforma-
tions. We assume that the Young's modulus and Poisson’s coef-
ficient are not fixed but they depend on the deformed state, i.e.
E = E(z, z, eq, €5, T), v = v(z, 2, e, €is, T'), where eg is volume
deformation, e;, is plastic deformation. Substitution of (8.1) into
(8.2), yields

Ogz = ITEUE[EII + 2X11 — EZ‘; . (83)

Integration of (8.3) regarding z allows to get forces in the middle

plate-strip surface:

h/2 h/2 E
T11=/ 0’;,_-1-(13=E11/ 1—V2d2
—h/2 —h/2 (8.4)

h/2 Ez h/2 E
o [ - [ T dz.
X —h/2 1 —v? —h/2 I =2
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Introducing notation

hi2 B W2 i
= —dz, b= e R\ frs
“ .[-11/2 1 —v? y ‘/:"/2 1= U2Em.rdzs i=0,1,2,
(8.5)
we get

T11 = apenn + a1 x11 — by. (8.6)

Note that the coefficient by contains components of the temper-
ature and the remaining plastic deformations. Solving (8.6) with
respect to tangential deformations we get

LY, e ;
£11 Pt X1 + - (8.7)

Further, we multiply both sides of Eq. (8.3) by z and carry out the
integration of the plate-strip along its thickness. We get the bending
moment

h/2
My = /,/ Oze2dz = ajeny + agx11 — by. (8.8)
J—h/2

We substitute deformation of the middle surface (8.7) into (8.8)
to get

1 a b
My =y (—Tu - =%t + —
an an b]

a) a ayb
=—Tn+ (ﬂz = —1) X1+ (g _‘bl)-
ag ay ap

Taking into account the following notation

) + asx11 — by

a 2 b
g hmo-f g =M, g
agp g o

Eq. (8.9) can be cast to the following form
Mye = AyThy + Aoxin + MY, (8.11)
The equilibrium equation is as follows

PM,, 0 ow hry 8%w dw
T"’-’-E (Tll‘a—m) +ka11+q—7W—sha =0. (8.12)
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Equation of compatibility of deformations is not applied here,
since the beam deflections depend only on . The forces T’ occurred
in the beam middle surface are generated by reactions coming from
reinforced ribs, and they will be further denoted by 7'. They are
constant along the whole length of the beam-strip, and Eq. (8.12)
can be rewritten in the following form

9’ M, 9w hy 0%w ow
e+ g + Tha 4 - ]W" ehr = 0. (8.13)

We derive the equation of compatibility of deformation of the
beam-strip and the stiff rib. We define the joint support displacement
generated by the beam-strip deformation. For this purpose we write
equation of coupling between deformations of the middle surface with

displacements
ou 1/0w\? ‘
8_: =& +kpw — = (_u) . (8.14)

In the latter relation we substitute 1, from the Hook law for the
middle surface (8.7), and we obtain

1 bo d
En = —Tn = —\’11 + +k 2( w) : (8.15)

ox

Therefore, we may compute the full displacement of support A
(we call it positive, when supports approach each other):

- “ du dw i | ay bo
A==k P 2A (aa-) l“'A <auT“‘ "“*bl)d‘”

a 1 [ /ow 2 . a
—ks / wdr = — — ) dz —T* -k, | wdzx. (8.16)

On the other hand, the quantity A is described as shortening of
the reinforced beam
o, (1 - 12
A= p(—p)u. (8.17)
E,
The following notation has been applied: @), is the compressing
stress in a rib, E, is the constant elasticity material modulus. Multi-

plier (1 —7) is mtmduccd because the separated stiff rib plays the
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role of a thin beam of a rib. Comparison of expressions (8.16) and
(8.17) yields

ap (1-v}) 2 / B “
E, a+T =3/, \a da: ke /0 wdz. (8.18)

We have introduced a series of assumptions so far. In particular,
we have assumed that the deflections of the beam-strip are small in
comparison to dimension a, and forces T}, acting on the ends of the
clementary element dx should be equal, i.e. we have applied here the
theory of average bending.

Equilibrium condition of a movable beam-strip end yields

T*
Op = —

o (8.19)

and substituting it to (8.18) yields

(o (1-12) (22 :
—_— 1 -k T, :
T ( E,F. a+ 2/0 B dr — k, /0 wdz, (8.20)

and hence

T*=2 0(3_) kjwdz

<——————g Fu )a -+ 1)

In what follows, while applying the iteration procedure, the value
T will be given from a previous iterational step, i.e.

(8.21)

ay “fb a (8.22)
= Tn/ —dx — / (—0 = —lXu) dz = Ty + Bo.
0 @ Jo \ao Qo
Therefore, using (8.21) we obtain
o 7 ( Jo (32) d-'”‘krfo “’d“") Bo (8.23)

1-12 B
<op$§lll‘::p)a + 1) :
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In the case when both ends of the beam-strip are clamped we can
take F, = oo and the formula is essentially simplified. Let us come
back to Eq. (8.12). The values of T1; are found through the iteration
process via formula (8.23), whereas the. value of M, is yielded by
formula (8.11), assuming that y = -—%1 Therefore, we have go,
the algorithm of computation of infinite panels taking into account
geometric nonlinearities and elasto-plastic deformation as well as the
external load action.

8.1.1.1  Relief process and secondary plastic deformations

We consider the dependence between strains and stresses for an
isotropic material in the following way

1
Cre = 300z + elp, (8.24)

The Mises flow material criterion is applied [Hill (1956)], since it
is validated experimentally by soft materials like aluminum, copper,
iron and steel.

In the theory of small elastic-plastic deformations, the properties
of the dependence between stresses and deformations are defined by
the function

o; = f(e), (8.25)

where a; is the stress intensity, ¢; is the strain intensity, Gy is the
characteristic value of the shear modulus in the non-deformed state,
o, is the plastic flow threshold, (e’]’ is the residual deformation in
a studied element in the loading instants, e is the begining of a
secondary loading (Fig. 8.2).

It is assumed that formula (8.25) does not depend on the
stress state, and it can be found experimentally while stretching—
compressing a cylindrical sample. Below, we give a few analytical
forms of dependence o; = [ (e;):

1. Ideally elastic-plastic body:

o {36’()(3,-. for e; < ey, (8.26)

Gy for > eg.
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Fig. 8.2 Dependence of the intensity of the deformation of the stress intensity.

2. Elastic-plastic body with a linear strain hardening:

3Goe; , for e; < e,
;= § 9
o {BGuei + 3Gy (ei —es), for e; > e,. (8.21)
3. Pure aluminum model:
oi = 05[1 — exp (—e;/e,)]. (8.28)

4. Fractional exponent dependence:
o;=Ae", 0<m<1. (8.29)

where A and m are defined experimentally.
3. Cubic dependence:

oi = Ee; — me? (8.30)

l’ .
where E and m are material constants.
6. Fifth degree polynomial:

o; = Ee; — me} — mae}. (8.31)
where E, m; and mgy are material constants.
7. Square formula:

Ae;
g = (8.32)

2
1+ ()

8. Ramberg-Osgood formula [Ramberg and Osgood (1943)):
oi = Ee; — Ael". (8.33)
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Besides the mentioned formulas o; (e;) one may find more exam-
ples of the stress-strain relations in the literature. However, for oup
algorithm the dependence o; (e;) can be defined arbitrarily, even inp
the form of a table obtained from standard experimental results.

In what follows, we consider o; (e;) presented in Fig. 8.2. In the
elastic part, we have

a; = 3G0€,j, (834)

where G is the characteristic value of the shear modulus in the non-
deformed state.

After achieving an elasticity threshold, the loading process (de; >
0) o; (e;) is described by (8.25). For lightening (de; < 0), owing to
the reference [Schevchenko (1970)], o; (e;) is defined by relations:

g; = 3G(_)f.’”,' . E”,’_ =€; — e’l), (8.35)

where €/ is the remaining deformation in an element in the lightening
time instant. Formula (8.35) defines o; (¢;) in the case, when in the
element (while lightening) the secondary plastic flow deformation
does not appear. In a domain of the secondary plastic deformation
(e; > es), their intensity is defined by the following formula

oi = fi(e:). (8.36)

Functions f; (e;) and f (e;) do not depend on the stress material
state and they are defined experimentally by a stress—strain investiga-
tion of cylindrical samples. Owing to the geometrical interpretation
of the deformation process in the plane ; — o, the quantity €”; can
be presented in the following form

ei=e —él, (8.37)

i.e. in the way as in (8.35), but in this case e”; and o; are negative
quantities.

The so far given representation of ¢”; corresponds to system coor-
dinates (¢”;,0;), and the directions of axes coincide with the direc-
tions of axes (e;,0;). If after the lightening process a body is loaded
by the forces with opposite signs with respect to the firstly initiated
loading, then it is more convenient to apply the system coordinates
(e},o}) with the axes “e” having directions opposite to the axes of
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¢; and 0. In the latter case ¢/; = e} — e; for e; > ¢f, and for ¢; < €
the following formula holds: ¢/; = ¢; — e’l’ .

The corresponding changes should be carried out in relations
(8.35), (8.36) and all successive relations. In both cases, the origin of
estimation of stress-strain intensity is related to the body element
state, which has only plastic components of deformation E}J’-), oceur-
ring in this element up to the beginning of the lightening. Further,
we apply the coordinates (e”;,0;).

For material exhibiting the ideal Bauschinger effect [Kadashevich
and Novozhilov (1958)], the equation of curve (8.36) in the space of
secondary plastic deformations can be written applying the trans-

formed function o; = f)(e;) in the following form [Schevchenko
(1970)]:
01— 05
0’,’:0’1—0'3—_)0(6’1)4' 1300 '—'(’.,‘). (838)

where o is a stress corresponding to the beginning of lightening.

Function (8.38) in plane (e;,0;) represents a curve which can be
obtained via a parallel displacement of the curve o; = f) (e;) on the
value of 0; = 01 — 05, € = €} + %&(‘;’i, and then the rotation by
an amount of radians around the point with the given coordinates.
Therefore, for e; = € we have o; = a1 — 20,.

Relation (8.38) defines the dependence between intensities of o;
and ¢; in a domain of elastic lightening, if the function f in (8.38)
for e; > €Y is written in the following form

f (,,;]: ol — g e,) = 3Gy (ef; il =0 e,~>. (8.39)

3Gy 3G

If in the separated body elements, after the lightening with sec-
ondary plastic deformations, the process of the next loading de; > 0,
the dependence o; = f) (e;) will be described by the formula (8.35),
where ¢”; = ¢; — €}, and €} corresponds to the beginning of the sec-
ondary loading. If the secondary loading process is associated with
the change in plastic deformations, then the intensity of stresses is
not governed by (8.35), but rather by the following formula

oi = fa(e"y). (8.40)
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The formula (8.40), similar to functions (8.25) and (8.36), does not
depend on the stress state character, and it is defined experimentally.
Functions (8.40) define in plane (e;,0;) a curve, a straight line (8.35)
(elastic deformation), under the condition that e is defined by the
following equation

e =e;—éh. (8.41)

For a material with the ideal Bauschinger effect [Kadashevich and
Novozhilov (1958)]. the function (8.40) is defined in the following way
[analogously to (8.38) and (8.39)]

oi=09+0s+ [ e,'—eg-l-az—(rs), (842)
3Gy

and the elastic part of the deformation curve is approximated by the
following formula

(e tg) 6o (-t g). 6

where o is the stress intensity defined by the formula (8.38) in time
instant associated with the beginning of the secondary loading.

It should be emphasized that the given process takes place in all
sample points and in all time instants.

8.1.1.2 Mathematical model and computational algorithm

We consider nonlinear vibrations of a rectangular plate subjected to
the longitudinal harmonic load under the condition that one of the
plate dimensions is larger than the second one, i.e. a < b (Fig. 8.3).
We are interested in beam-strip parts adjacent to short edges, and
we assume that on the remaining parts the plate is bent along a
cylindrical surface. Then, it is sufficient to investigate vibrations of a
beam-strip of length a and width equal to 1. Therefore, it is necessary
to solve Eq. (8.13) satisfying the following assumptions: lack of cur-
vature k, = 0; intensity of the stress-state state o; = %gc;, where
E (Young’s modulus) is constant; temperature influence is neglected
ap = 0.
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T

q=q, sin(w,t)

Fig. 8.3 Computational scheme.

The so far given assumptions essentially simplify the computa-
tional algorithm given in the previous subsection. Namely, we get

Eh Eh?
ao—ma ay =0, 02—12(1__Vg), by =0,
1 [ [(0w\? Eh o/ ow\?
P petlg === — ; 8.44
2131/0 (a> e 2a(1—u2)/o (a) e
3 2,
Mz, = agx11 = — o oy

12(1 — v2) da?”

In this way, we have omitted the iteration procedure, and we have
got the following 1D variant of the von Karmén equations:

hy .. . o' Eh @/ w\? 0w
g e =D - {/0 (z) ‘“} pr

0%w
—Pm(t)@m(t,x),

(8.45)
where w(z, t) is the deflection function, z is the spatial coordinate,
t is time, a is the dimension of beam-strip, & is the thickness, P, (1),
q(z,t) are longitudinal/parametric and transversal loads, respec-
tively, E is Young’s modulus, D = mf—'_d.,r) is the cylindrical stiff-
ness, v is Poisson’s coefficient, 7 is volume specific material weight,
g is the Earth acceleration, € is the damping coefficient. We recast
the governing equations to the counterpart non-dimensional form by
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introducing the following non-dimensional parameters (with bars):

Ehd— Eh?
T = aZ, w = hw, Py(t) = a—zp.r (1), q= 0—4‘7-

f_az E N, i 1
2\ Eh2g T 12(1—0?)

Finally, Eq. (8.45) takes the following non-dimensional form (bars
are omitted)

" . dtw L/ ow)? 0%w O*w
w+ew——/\?+6)\{/o ( ) (ll}m-l’,-r(t)a?'f'q(t,l‘).

d o

(8.46)
In Eq. (8.46), dissipative properties being proportional to the
motion velocity are taken into account. It should be emphasized that
different models of dissipative properties are used (see Chapter 5 and
the reference [Bolotin (1961)] for more details). As it is known from a
linear theory of vibrations, there exists linear and nonlinear frictions
(see [Golovin (2012)]). The latter one can be approximated by var-
ious analytical formulas. When the bodies are cyclically loaded and
deformed, the Hooke's law violation is observed (even for loading)
exhibited by the occurrence of hysteretic loops. The surface of a hys-
teresis loop defines energy dissipated per one cycle of vibrations and
per unit of material volume. It is already known that hysteresis loop
surface, for majority of the used materials in industrial applications,
does not depend on the deformation frequency process, but it rather
depends on the deformation amplitude. Equation (8.46) should be

supplemented with one of the following boundary conditions:

(i) Simple-simple support:
w=w",=0 forz=0,1; (8.47)
(ii) Clamping—clamping support:
w=uw', =0, forz=0,1; (8.48)
(iii) Simple-clamping support:

w(0) =w,(0)=0, w()=w";(1)=0, (8.49)
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and one of the following initial conditions associated with the men-
tioned boundary conditions:

(i)
w (¥) |t=0 = wosin (7x) , W (x) |t=0 = 0; (8.50)
(ii)
w (z) |i=0 = wo (1 — cos (2mz)) , 1 () |4=0 = O; (8.51)
(iii)
w(z) |t=0 = f(x), 1 (x) =0 =0. (8.52)

Function f(z) describes a deflection defined by the set-up method
with respect to a small value of the transversal external load action
[Feodosev (1963)].

In this chapter, we consider nonlinear vibrations with linear fric-
tion. It should be emphasized that when a constant load is applied,
then the problem is reduced to the solution of a static problem.
Namely, a so-called set-up problem can be applied, when £ = 2,
(critical damping). Then the vibrations of the investigated plate
rapidly fast decrease, and the solution tends to its stationary coun-
terpart for {¢;} — {w;}. The set-up method was firstly applied by
Feodosev, who considered a stability problem of a spherical dome
subjected to the transversal load. It should be noted that dissipative
terms are introduced artificially even to solve large sets of algebraic
equations, and then the iterational process is obtained having a lot
of advantages in comparison to the widely used Newton's method.
For time dependent loads P, (t), g(x,t), the parameter ¢ essentially
influences the character of vibrations of a mechanical system as well
as the location of chaotic zones.

8.1.2 Reduction of PDEs to ODEs
8.1.2.1 The BGM

The BGM [Volmir (1972)] allows to reduce the initial-boundary prob-
lem governed by a PDE (problem of infinite dimension) to a set of
truncated ODEs (problem of finite dimension). Although this method
has a series of advantages, it also possesses drawbacks. From one side
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it allows to get reliable qualitative results even if rough approxima-
tion is used, but from the other side the method strongly depends on
the introduced boundary conditions. A numerical experiment shows
that the mentioned method allows to achieve convergence of the iter-
actions already using 2-3 series terms, which means that the system
of ODEs with low dimension can be applied.

Let us introduce a solution in the following form

w(a, t) =Y Ai(tywi(x), (8.53)

where w(x, t) should satisfy the introduced boundary conditions.
After application of the BGM to Eq. (8.46), the following system of
ODEs is obtained for A;(t):

N N N
Z (/.1'1' + EA:‘) ajp = —A Z Aibir + 6AL({A}Y) Z Aici
i=0 i=0 i=0
.54
v N (8.68
— Py(t) ) Aicir + Qx(t),
i=0

where £k =0,1,...
In the above, the following notation for the coefficients is applied

1 1
= / wilz)w (z) do, b = / wl¥ (@)u (=) dz,
0 0

1 1
= [ wl@une)iz, QO = [ @ u@)ds. (555

1 (N 2
L({A,-}{V) =/0 {ZA,-(t)w',-(:c)} da
i=0
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The system of second-order ODEs can be reduced to that of first-
order ODESs, which can be directly solved with one of the widely
applied Runge-Kutta methods.

We analyze the BGM applied vibrations of an infinite panel with
a geometric nonlinearity. We consider a solution to Eq. (8.46) with
simple support (8.47). We take {sin7(2i + 1)z T}y n as basic func-
tions of BGM. Since they satisfy the boundary conditions, we take
the solution in the following form

£) =D Ai(t)sin(m(2i + 1)a). (8.56)
i=1
Substituting (8.56) into (8.46), we get
N
¥ (A',- 4 EA,:) sin(m(2i + 1)a)
i=1
= —/\Z Ai(m(2i + 1)) sin(m(2i + 1)a) — (6AL ({Az}iv)
i=1
N
Z m(2i +1))%sin(r (2i + 1)x) + g(z, t),
(8.57)
where
y 2
L ({A,- f’) = /0 {; Ai(m(2i + 1)) cos(m(2i + 1).7,-)} dz
N N 1
= ZZ/ {A;A;m(2i +1)(2) + 1)
i=1 j=10
x cos(m(2i + 1)z) cos(m(2j + 1)a)dx (8.58)

N o1
=y / {A(2i + 1) cos(m(2 + 1))} dz
i=170

N
(A;(2i +1))2
1

wl"—‘w

1=
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We multiply both sides of (8.57) by sin(7(2j + 1)z), and then we '

integrate both sides of the new equations for x from 0 to 1 to get
N

Z (A',- - EA,:) /l sin(m(2i + 1)) sin(w(2j + 1)x)dx

i=1 0

= —/\ZA () / sin(m(2i + 1)x) sin(w(2j + 1)x)dx
8.59
+(OAL (A1) (658
N 1
- Pm(t));Ai(ﬂ)z/o sin(mix) sin(mja)dr

{f
+ q(z,t) / sin(mjz)da.
(1]

Since functions {sin(m':::)}{V are mutually orthogonal in the inter-
val [0:1], the following equations are finally obtained

Aj +eAj = —2Aj(mj)* - (3,\7#’2 (Aii)? — Py(t )) Aj(mj)?

i=1
4
+ —qlx.t). (8.60)
mj

The N second-order ODEs are transformed to a system of 2N
first-order differential equations of the following form

Aj(t) = A'4(t),

Ay =—cAlj - MA; (71'] (3/\71‘2 Z ) Aj("j)2

i=1
+i,q(:v. t), (8.61)
)

which are solved numerically using one of the Runge-Kutta methods.
We consider the problem separately for lack of transversal excitation
(q(x,t) = 0). It is obvious that in the case when the initial system
deflection does not exist, the solution to the problem is trivial (zero).
This is why we introduce the initial conditions in the form of (8.50),
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which corresponds to the introduction of an artificial small deflection
of the plate. Owing to the structure of Eq. (8.61) one may conclude
that the initial perturbation in the form of a first harmonic does not
interact with higher order harmonics (the coefficients standing by
higher harmonics are equal to zero). In the latter case, the system
of Eq. (8.60) is reduced to the well-known Duffing equation [Nayfch
and Mook (1995)] of the form

Ay +eAy = —(Wr?(1 4 342) — P, (1)) A 72 (8.62)

We consider a solution of Eq. (8.46) with boundary conditions
(8.48). As basic functions of the Bubnov-Galerkin approach, we take:
{cosm2iz — 1}, v, or equivalently, we assume the following solu-
tion form

N
t) =) Ai(t)(cos(2miz) — 1). (8.63)

i=1
Substituting (8.63) into Eq. (8.46), we get

N
Z (A,- + EA,-) (cos(2mixz) — 1)
i=1
N
=AY Ay(2mi) cos(2rix) — (6AL ({A,-, o ) (8.64)
i=1 "
— P,(t)) Z A;(2ri)? cos(2miz) + q(a, t),
i=1

where

L({4}})

2
/] {Z Ai2mi sin(21riar)} dz
0

=1

N
Z/ {A;Ajan? sin(2miz) sin(2mjz) } da
0

i=1

Il
Mz

1

t

<.
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A N
= ! i=1
1 (8.65)

Multiplying both sides of Eq. (8.64) by cos(2mjz), and carrying
out the integration procedure from 0 to 1, we obtain

N 1
A; +eA; ) — 1) cos(2mjz)d
Z (A,+6A,,)/0 (cos(2mx) — 1) cos(2mja)dx

N 1
= —A; A,-(27r-i,)4/0. cos(2mix) cos(2mja)dx
+ q(:z:,t)_/1 cos(2mjx)dx (8.66)
0
N
~ 6L ({41 = Po() Y Ai(2mi)?
i =1
x/ cos(2mix) cos(2mjz)dx.
0

Since the functions {cos(21ria:)}llv are mutually orthogonal on
interval [0 : 1], the following system of equations is obtained

N
Aj+eA; = —2A;(2m))t - (mmz ) (Ai)? - Pm(t)) A;(2mj)?

i=1

N
~ Y (A +edi) = qla.t), (8.67)

=1

which is reduced to the following first-order differential equations

Aj(t) = A'4(0),

N
Al = —eA'; — MA;(2m))" - (12,\7r2 > (Aii)? - Px(t)) Aj(2m5)>.
= (8.68)
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8.1.2.2 FDM

Explicit and implicit schemes

In order to reduce PDEs (8.46) to ODEs, we apply the FDM to
the spatial coordinate 2. In the mesh

GN={OS:E,'SI, :l,'i='i/N,i=0,...,N}, (8.69)

we substitute the partial derivatives by their difference counterparts,
and we get

1
Wy + ew; = —AAga (w;) + 6 {/ Ag (w;) d:c} Az (w;)
A (8.70)
= Po(t)Ag2(w;) + q (ih, t).

Integral occurring in (8.70) can be found numerically, for exam-
ple, via the Simpson formula. The following formulas hold for the
boundary conditions (8.48),(8.47):

1. Simply supported edge (-)_; = —(-),.
2. Clamped edge (-)_, = (-),-
Introduction of the change in variables
’lbi = w’,- (871)

reduces second-order ODEs (8.70) to the first-order ODEs regarding
deflections w; and velocities w) of the following form

1
W) +ew'; = —AA g (w;) + 6A {/ Ag (w;) da:} A2 (w;)
0 (8.72)
— Pp(t)Ap2(w;) + q (ihy t).

In order to construct an implicit scheme, we take a regular mesh
Gn. On this mesh, we define Eq. (8.46) in the form of three-layer
difference scheme with weights (the Krenck—Nicholson method). We
have

;= Al {A‘Jr ('w-,')}zd.'l:,
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ZE = <MK, () + {6Aa — Pe(t)} Ak (wy),

w{+1 = Zw{ = ur,?._1 + L_win - urf—l
72 N 27

=0Z! + (1 -0) ZI* +q(ih, t). (8.73)
Superscripts (subscripts) correspond to layers in time (space).
Time derivatives are approximated with accuracy of O (T2), whereas
space derivatives are estimated with accuracy of O (h?), O (h%),
O (h®). Computation of the coefficient a as well as boundary condi-
tions is similar to the case of the explicit method. It should be noted
that contrary to the explicit method, the integration in time is car-
ried out not by the Runge Kutta method, but rather via a solution
to the linear equations. The system matrix is of a band type and its
width depends on the approximation order of the derivatives O (h“)
and O (h‘”’). For approximation O (hz), the associated matrix has 5,

7 and 9 diagonals, respectively.

Computation of difference derivatives

Operators A, Ag2, A s can be estimated with various steps of applied
approximation. In order to get formulas for difference derivatives,
we apply the following program for symbolic computation in Maple
environment.

Here we use the classical approach to find the difference deriva-
tives. We define the dimension of a pattern required for interpolation
of a given derivative with required accuracy. Then we construct the
interpolating polynomial, and in the next step the obtained polynom
is differentiated by the required number of times. Finally, the poly-
nomial value in the center of the pattern is computed. The following
procedure is applied

fd = proe(n,m)
locall, df;
[ := floor(m/2) + floor((n —1)/2);
interp([seq(k * h.k = —1..1)],
[seq(y(k = h), k = —1..1)],x);
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df == simplify(subs(xz = 0, diff (%, x$n))):
print(df);

print(series(series(df, h,m +n), h.m))

endproc

Here n denotes the order of a derivative, whereas m stands for the
approximation order. It is clear that the dimension of the difference
derivative is coupled with m and n in the following way

l=[m/2]+ [(n—1)/2]. (8.74)

A given maple-function not only yields a formula for the differ-
ence derivative, but also shows that approximation of the difference
derivative corresponds to the given parameters. Application of sym-
bolic computations essentially simplifies the process of routine type
computations, and also allows to omit possible errors introduced by
hand-made derivations. l

We demonstrate this approach regarding the difference deriva-
tive computation of order O (h.ﬁ). In what follows, the formulas for

different orders of approximations are given.
For O (h2), we have

a(-) 1
(E) ~ o (O = Oica] = A () +O(R2), (8.75)

o2 (- 1
(aTJ), = h2 [(')H—l . 2(')i -+ (')i—l] = A2 () + 0(/1.2), (8.76)

o4 (- 1
< 3154) )i ~ h—‘l [(')i+2 i 4(')i+1 i 6(')i . 4(')1‘—] + (')i._z]s

= A (-) + O(h?). (8.77)
For O(h'), we have
a() 1
(E)‘ ~ 1on [(Diza = 8(-)icy +8(-)is1 = (Diga]
= Az (+) + O(hY), (8.78)
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FON o 1 g Yoor — 30()s + 16();_y + (s
( ) ).- ~ o2 [(-)isn +16(-);41 — 30(-); +16(-);_ o)
= A,z (-) + O(hY), (8.79)
((‘)“ (.)) ~ ,l] [—()is + 12(-)ip2 — 39();41 +56(); — 39();y
s 75
+12();_g — (-)ig] = Aaa () +O(RY). (8.80)

For O (h%) we have

(0()) ~ 5 [(')i+3_9(')i+2+45(.)i+1—45(.)i_1

Oz ). 60h
+9(:);_p = (-)i—s] = Az () + O(R®), (8.81)
P (: 1 =97(:). Ny —-490();
( 6‘152)>i ~ 1302 [2(-);43 — 27(-)i30 +270(-); 41 — 490(-);
F270(-);_; +27(-);g +2(-);_z] = Aa2 (-) + o(h%),
(8.82)
0;‘ : 1 3 o). —_ o).
( 3.154) )i ~ 2010 [7(-);q4 — 96(-)i3 +676(-); 0 — 1952(); 14
+2730(); = 1952(:); _y +676();_5 = 96();—3 + (i)
= A (-) + O(h9). (8.83)

As it can be seen from the reported formulas, the number of out-
contour points increases with the approximation order increase: 1 —
for O (h?), 2 — for O (h*), 3 — for O (hY).

In order to compute the partial derivatives, we may also apply a
more general approach. Consider the following relation

bof" (x —h) + by f" (z) + baf"(x + h) (8.84)
~cof (x —h) + e f (x) +caf(x+h).

We aim at finding coefficients bg, by, ba, ¢o, €1, 2 such that the
formula (8.84) is satisfied with the highest accuracy order.
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Let f(z) = ™", then we get

—wz(bue"“’" + b + bzeiwh)eiwh ~ (Coe—iwh +eq + 62eiwh)eiwh'

(8.85)
We are going to find the mentioned coefficients in the neighbor-
hood of h = 0. Taking into acconnt & = " (In¢ = iwh), we get

{E}z _ o+ 1€ + eaé?
h | 7 b+ b€+ bo€?’

Formula (8.86) implies that the best approximation in the neigh-
borhood of § = 1 is yielded by the Padé approximation of the function

{%{}2 (see Fig. 8.4)

(8.86)

{m_g}2~ (E=1)? 12— 246 +12¢2
h ] TR+ (E-D)+5E-17) K1+ 10E+e)
(8.87)

Parameters of Padé approximations (s =3/2,d=3 and n=7).

The coefficients of implicit difference derivatives are defined by the
following Maple-function:

with(numapproz);

implicid__fd = proc(n,m, s, d)

localt;

t := pade(z® * In(x)™,x = 1,[n,d)) :

print(coef f(expand(denom(t)), x,i)$i = 0..d);
print(coef f(expand(numer(t)),x,i)/h"$i = 0..n);
end  proc
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Here, m is the order of the derivative approximation: s is the pat-
tern shift of derivatives; d is the dimension of the pattern derivatives
(without 1); n is the dimension of the pattern functions (without 1):

For the explicit difference derivatives, the nominator of the .Pade
approximation has zero order (d = 0) and we may apply a simple
Taylor series development. In other words, we have got one 11.101:e
way to estimate the coefficients of the difference derivatives. This is

realized by the following Maple-function:

fd__ = proc(n,m)
locall, df ;
l:= floor(m/2) + floor((n—1)/2):
expand(convert(taylor(a' * In(z)", x = 1,2+ [ 4 1), polynom));
df = simplify(sum(coef f
(%, x,i) * y((i = 1) * h)/h",i = 0.2 x1));
print(df );
print(series(series(df, h,m +n), h,m));
end proc

The latter function coincides in full with the classical approach
function, and it may also serve for checking of the obtained differ-
ence derivative of given parameters. The problem of computatim'ls of
partial derivatives can be studied from five different points of view:

(i) Interpolating approach. Operator of a partial derivative is the
exact derivative of an interpolating polynomial constructed on a
certain pattern. This approach is widely used by spectral meth-
ods devoted to computations of partial derivatives.

(ii) Approzimation of differential operators. The operator of a., par-
tial derivative is defined by the finite difference approximation of
a differential operator. This approach has been used for checking
the results presented in earlier examples. )

(iii) Correlation approach. The differential operator can be consid-
ered as a correlating filter from the position of frequency filters
with the appropriately chosen coefficients to approximate a par-

tial derivative.
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(iv) Multiplication by a Toeplitz matriz. Computation of a partial
derivative can be viewed algebraically, as the multiplication by
a band matrix (Toeplitz matrix). This approach plays the fun-
damental role while constructing implicit schemes.

(v) Spectral methods. This method is based on the Fourier series.
Operator for a partial derivative is presented as an inverse
Fourier transformation regarding a direct discrete Fourier trans-
formation and the properly defined coefficients. This approach
can be generalized into an arbitrary basis of a space of contin-
uous functions.

However, introduced approximations to continuous differential
equations by the difference equations imply a modification of the
physical properties of an investigated system. From the point of view
of dispersive and diffusion properties, the continuous and discrete
solutions are not fully equivalent. This is why we require adequate
information on the modification of solutions introduced by discretiza-
tion. This problem can be solved with the theory of digit filters.

Let us consider the difference approximations of space derivatives
from the point of view of the digital filters. They can be classified as
linear stationary non-recursive filters. One of the important charac-
teristics of a digital filter is the transition function characterizing the
ratio of an output complex signal amplitude and an input complex
signal amplitude. In our case for differentiation of a spatial deriva-
tive, we deal with the relation of discrete and continuous dispersion.
The continuous rule of dispersion should be negligibly perturbed in
order to keep possibly “flat” transition function.

We consider an action of the difference operator regarding the
fourth derivative using different approximation orders on a harmonic
signal. Substituting the harmonic input w(zx) = ™" into Eqs. (8.77),
(8.80), (8.83), after trigonometric transformations, and division by
the dispersion term w?e«? , the following transition functions corre-
sponding to the applied operators of digital filters are obtained

4(3032 (mp) — 2cos () + 1

= i 994

s (8.88)
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iy = _écos3 (mp) — 6cos? (mp) + 9cos () — 4‘ (8.89)
4 3 7r4<,o4
1
6 = 15
7cosd (mp) — 48cos®(m) + 1626082 (mp) — 208 cos(myp) + 87'
& 1,1
mip

(8.90)

The latter relations have been obtained with the help of the fol-
lowing Maple-function:

fd__filter := proe(n,m)

locall, df;
| := floor(1/2*m) + floor(1/2 xn —1/2);
expand(convert(taylor(a' * In(z)", @ = 1,2 % | + 1), polynom));
simplify(sum(coeff (%, x,i) * exp(I * (i — 1) * h)/h",
i =0..2%1))/I™;
subs(h = Pi % phi, %)

endproc

In the above n is the derivative order, whereas m denotes the
approximation order.

In Fig. 8.5, graphs of transition functions of digital filters co.rre-
sponding to operators (8.77), (8.80), (8.83) are reported. Drawings
are given in interval [0,1], where 0 corresponds to zero frequency,
and 1 is the Nyquist frequency w ="/. 3

Figure 8.5 shows that for all approximations the transition func-
tion is strongly damped in high frequencies interval. However, the
transition function of the operator Ly possesses more “flat” prof.ile
than Lo, i.e. it perturbs less the continuous dispersion rule, in 'par?.lc-
ular on low frequencies, where the fundamental energy localization
is expected. .

It is clear that the operator Lg differs from L, rather marginally,
and hence in many applications we may use Ly.
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Fig. 8.5 Transition functions for the fourth difference derivative with different
approximations.

Approximation of functions and their derivatives on a mesh

From a historical point of view, the fundamental method of inves-
tigation of partial differential equations is associated with the use
of explicit difference schemes of low orders. These methods are uni-
versal and have simple realization. Even today they are used to a
general picture of the PDEs behavior, to find the direction of further
investigations that emphasize on requirements regarding accuracy,
stability and computational speed. Difference schemes are simple in
realizations and they can be easily adapted to various forms of the
initial and boundary conditions. The latter property is of a particular
importance in comparison to the Bubnov-Galerkin approach which
depends essentially on the applied boundary conditions. Since the
computation of the difference derivatives is carried on a certain nar-
row mesh interval, the computed values of the derivatives depend
only on the values of the neighborhood mesh nodes. It is tempt-
ing to expect that the increase in the approximation order and the
increase in the difference pattern should solve the problem of localiza-
tion, but it leads to other problems related to computation require-
ments. Errors associated with digital accuracy increase, as well as
the occurence of computational complexity.
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The validity, reliability and quality estimation of the numerical
solution requires a rigorous definition of errors in the computational
methods. In the case when we look for a scalar quantity, the estima-
tion of absolute and relative errors allows for adequate monitoring of
the evaluation of the quality of the applied algorithm.

However, in the case when a function is the solution, there exist
a few alternative methods of error computations, based on various
norms. If the error on inteval [a, b] is defined in the following way

e(x) = w(x) — w(x), (8.91)

where w(x) is the exact solution, and w(x) is the numerical solution,
then in practice the following definitions of norms are applied

lello = max, le(z)| , (8.92)
b
lell, = [ le(x)|da, (8.93)

a

b
llelly = ‘/ / e(z)*da. (8.94)

All those definitions are particular cases of the so-called p-norm

defined as follows
b
lell, = {/ [ le(@da. (.95)

In the case when the numerical solution is in the form of a mesh
function, we must compare it with the exact solution. The following

vector of errors is introduced

ei = w; —w(x;), (8.96)

which allows for numerical error estimation with respect to an arbi-
trarily chosen norm. However, an arbitrary vector norm may increase
while increasing the number of mesh points, which can yield erro-
neous results regarding estimation of the error order.

Panels 369

In order to remove the mentioned drawback one may discretize
one of the norms (8.92)-(8.94), for example, in the following way

b
llelly = B le(z)). (8.97)

Writing programs realizing one of the numerical methods devoted
to finding a solution to PDEs requires verification and validation of
the applied algorithm and its realization. There are a few approaches
to solve the mentioned problem.

In the case when the exact solution of a given problem is known
for some initial and boundary conditions, this solution allows not
only for validations of the correctness of the written program, but
it also allows to follow asymptotic evolution of the error. and ’evou
to define a constant of the known asymptotics. Let us assume that
we know the exact solution w(x) to a problem. Carrying out the
numerical solution on the introduced mesh with step I;, we find an
approximating solution ",

The following error function is introduced:

BE(h) = |Ji" — wh|. (8.98)

If the used method has an approximation order P, we may expect
that

E(h) = Ch? + O(h?). (8.99)
Then we decrease the step twice to get
Ch?

and hence
E(h)
= loggﬂ (8.102
Eh/2) A%
Knowing p, one may define the constant of asymptotics of the
method:

C = E(h)/h". (8.103)

Therefore, having in hand the exact solution, two series of com-
putations allow to define both order and constant of the asymptotic
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method. Even if we monitor a “good behavior” of the numerical solu-
tion it is worthy to carry out other computations on a more dense
mesh, in order to follow a proper asymptotic error evolution. The
latter method allows to exhibit certain small errors introduced while
writing a program code.

In the case when the exact solution is not known, one may try
to simplify the problem, and in the beginning to solve the cognter—
part simplified mathematical model, for which the exact solution is
known. The latter approach, though not fully sufficient, allows to dis-
cover introduced errors in the initial step of the algorithm. Besides,
introduction of more dense mesh yields a good estimation of com-
putational errors. Let us assume that we have carried out two series
of computations with steps h and h/2. Then, taking the solution
associated with the dense mesh as exactly one, we get

= | wh — 'LD"“ + th" — whf? ”

- sy +o((£)) 108

In other words, the latter approach yields very good approxima-
tion of the errors introduced by the applied method. It should be
noted, hoWever, that the obtained numerical solution may converge
to a function which, in principle, has no relation to the real searched

Bh) = “wn — g2

solution.

8.1.3 Solving ODEs in time
Consider a problem with initial conditions
y'(t) = f(t.y(t), y(to) = yo. (8.105)

where function f : [ty, 00) x R — R4, and yy € R? is a given vector.

The so far stated problem is called the Cauchy problem and,
owing to the theorem on existence and uniqueness of the soluf.io.n
to an ordinary differential equation, the solution does exist and it 18
unique [Hairer et al. (1993)]. In order to solve numerically the for-
mulated problem, a series of methods have been developed, but t'he
more popular and useful are the Runge-Kutta methods. There exist
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boundary values problems, where the solution values are given in
a few points, and they require special methods like shooting, finite
differences and collocation. One may say that it is sufficient to solve
differential equations of the first-order. Equations of higher order
can be reduced to the first-order ODEs by introduction of additional

variables. For instance, the second-order equation y” = —y can be
presented in the form of two equations of the first-order: Yy =z and
!

2= —y.

8.1.3.1  FEuler’s method

In Eq. (8.105), we substitute 3’ by the following difference approxi-
mation

J () ~ y(t+h) - ;u(t)_

p (8.106)
Hence, the following formula is obtained
Yyt +h) = y(t) + hf(t,y(t)). (8.107)

The given formula is applied in the following way. We take the
integration step h and we consider a series of time instants t,
ty =to+ h, ta =ty + 2h,.... By y,, we denote numerical approx-
imation to the exact solution y(t,). Owing to formula (8.107), we
compute successive approximations to the exact solution via the fol-
lowing recursive scheme

Yn+1 = Yn + hf(t,, Yn)- (8~108)

The obtained equation presents the Euler method, proposed in
1798 by L. Euler [Hairer et al. (1993)]. Observe that Eq. (8.106) can
be also presented in the following way

V(1) ~ y(t) —y(t — h)_

h (8.109)
In this case, we deal with the so-called implicit Euler method
Yn+1 = Yn + hf(tn-flyyn+l)- (8~110)

In the latter approach, it is necessary to solve the equation of type
(8.110) on each computation step, and this method is implicit. It can
be solved also by the Newton method [Hairer and Wanner ( 1996)]. Tt
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is obvious that in this case each computational step requires essen-
tially more time in comparison to the explicit method.

In many cases, the Euler method does not have high accuracy, and
mathematicians have developed methods of higher order accuracy. It
is clear that in order to compute successive values, one may use not
only one value from the previous computational step, but also the
whole series of the previously obtained values. In practice, all multi-
step methods belong to a family of linear multi-step methods, and
can be presented in the following form

CpYntk + Ok—4Yntk—4 + - + QoYn
= h(Brf (tntks Yn+k) + Bk f (bntk—1, Yntk—-1) (8.111)
v ﬁkf(tm yn))

where ay, §) are certain constants. The latter approach yields a series
of the Runge-Kutta methods in memory of Karl Runge and Martin
Kutta [Hairer and Wanner (1996)]. Mostly known and used is obvi-
ously the fourth-order Runge-Kutta (RK4) method.

8.1.3.2 Runge-Kutta methods

We are looking for a solution to problem (8.105) in points i[t,-}{,v !
Then the following formula holds
tit1

Ynt1 =Yi + F(t,y(t))dt. (8.112)

L

We compute the integral using the trapezoid method: j:"“ f(t,
y(t))dt = %h(f(t,-,y,-)-{- f(tiv1,%i+1)). Owing to Euler’s formula, we
have: y;+1 = yi + hf(ti,y;). Therefore, we get

Vit1 =¥i+ %h'(f(tiv Yi) + f(tivr, i + hf (i, i) (8.113)

The method based on formula (8.113) is called the modified Euler
method. However, in fact this is the second-order Runge-Kutta
(RK2) method. It can be verified describing a solution y(t) in the
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vicinity of y; in the form of the Taylor series up to the terms of order
O(h?):

Yie1 = yi + hy; + %h2y"i +O(h%)
= yi + hf(ti, yi) + %h2f'(ti-yi) +O(h?)
=yi+hf(ti,yi) + %h2(f’:r(ti’ vi) + f'y(ti,yi)y's) + O(h?)
=yi + hf(ti, y:)
+ %hz(f’z(t,-, yi) + F'y (i i) f(ti, i) + O(R®).  (8.114)

The right-hand side of (8.113) is also developed into Taylor’s
series:

Yiel = ¥i + %h [f(tisyi) + f(tigr, yi + hf (ti, 9i)]

= it AUt + £t w) + b F ot 1)
+ hf,y(tiv yi)f(tiv yl) + O(hz)]
2
=yi + hf(ti,yi) + %(f’z(tiayi)

+ Iy iy yi)  (tiy 3i)) + O(h3). (8.115)

Comparison of right-hand side of Egs. (8.114) and (8.115) proves
that the modified Euler's method is the RK2.

In Eq. (8.112), we compute the integral by the method of rect-
angulars fltl‘*’ f(ty(t))dt = Lh(f(t: + Byt + %))). Owing to the
Euler formula, we have y(t; + g) =y + % f(ti,yi), and hence

1 1
YVir1 = Yi + hf (f, 4+ 5}1. Yi + Ehf(ti,?,')) 3 (8116)

The method based on formula (8.116) is known as the improved
Euler method. We show that the latter method also coincides with
the Taylor series (8.114) up to the terms of the second-order. We
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have

1 1 1
Vi1 =%+ Eh'f(ti + §hv'!/i + §hf(tisyi))

1
=yi+h|f(ti,y)+ Ellf',-(ti,yi)
1
+§h‘f'y(tia yi)f (ti,yi) + O(h?)

= yi + hf(ti,yi) + %hz [ oCtivyi) + ' (b yi) f(tinpi)] + O(R?),
(8.117)
and hence we have proved that in fact this is the RK2 method.
In general, the following RK2 method and the following general-
ized formula are used

Yiel = Yi + %h(f(tieyi) + f(tivr, yi + hf (i, 9:)),
(8.118)

1 1
Yitr =Yi + hf (ti +5hvi+ Shf(t, yi)),
which yields
Yis1 = Yi + ahf(ti,yi) + bhf(ti + ah,yi + Bhf(ti,y:)),  (8.119)
and it can be reduced either to the modified Euler method (a
0,b=1 a= %, B = %) or to the improved Euler method (a =
b=%,a=1, Bg=1).

The latter formula can be generalized for higher order approxi-
mations:

( ki(h) = hf (ti,vi)
ko(h) = hf (ti + agh, yi + Barki(h)),

1
2

J

kq(h) = h‘f (ti + aqh, Yi + )6qlkl(h') RS ﬂqq—lkq—l(h')) '

a
yirr =vi+ Y _ piki(h).

\ =1

(8.120)
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All Runge-Kutta methods are described by formulas (8.120).
However, not all formulas yielded by (8.120) define the Runge-Kutta
methods. Important question arises: How to choose parameters «, /3
and p to get a Runge-Kutta method of the given order s?

The stated question will be solved using an example of the third
Runge-Kutta method. Taking ¢ = s = 3, the following formula is
obtained

ki(h) = hf (ti yi) s

ka(h) = hf (ti + ach,y; + Barki(h)),

k3(h) = hf (ti + ash,yi + Barki(h)+s2ka(h)),
Yi+1 = Yi + prki(h) + paka(h) + paks(h).

(8.121)

We develop all terms of the right hand part of (8.121) into the
Taylor series up to h* order, and we get

( ki(h) = hf (ti.yi)
ka(h) = hf (ti + azh,y; + Barki(h)) = h[f + h (f po2 + f'yﬂglf)

1 D
+ oih® (/a0 + "ay0aln f + 1", 53, £%) + O(H°)

k3(h) = hf (ti + azh, y; + Bsiky(h)+a2ka(h)) + hlf + frash

‘ + 1" {Buhf + Buah(f + f'yazh + f' Barhf)}

1
4s ih.z (f"mag + 2f" pyaa(Bar + Baa) f

1"y Bor + Ba)2 1) + O(?)

\ Yit1 = Yi + vk + pake + p3ks.
(8.122)

On the other hand, developing y(t) in a vicinity of point ¢;
into Taylor series up to terms of order h*, the following formula
is obtained

] R 1
Yiv1 = yi + hy'; + §h.2( Fet 0+ 6”‘3( fla+ 1, 0) + O(hY)
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1 1
=yi+ fht+ Sh2 (' + fyf) + Gh° (e + 20 oy f + £y f*
+Faf'y+ (F)0) + O0). (8.123)
We compare the coefficients standing by h. h?, h®, and we get

h:p1f +pof +p3f =T,
h2: pa (fpo2 + [y B f) +ps (Foes + [y (Ba1 + Ba2) f)

=5 (et 1),

q 1
h3: 5P [f"2a03 + 2f" syaBor f + £, 85 17

+p3 [f'yﬂsz (f'yo2 + f'yBar f)
5 {2008+ 21" 5B + o) f
+f”yy(B31 + ﬂ32)2f2}]

]‘ " 1" " ! ! !
=6(f z::t:+2f xyf+f yyf2+fxfy+(fy)2f)'

(8.124)
We carry out the same operation, but this time with respect to
other coefficients:

fim+p+ps=1,
i 1
fz¢P2a2+P303=§,

f'yf + paBor + p3 (Ba1 + Baz) = . (8.125)

N = N =

I’y paBor + pa (Bar + Bs2) =

1 1 i 1
| g 51’203 + ‘2'P3‘1§ =5
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1 i
Sy f  paBa + 3P (B31 + B32) = 3

1 1 1

Flo s 51’2[331 + §P3(ﬁ31 + Ba2)? = 5
1 1

O L P30l =,

ry2p L g o5 1

(f'y)°f + 5pabaabn = e

We have got eight equations, but only six of them are linearly
independent. We take f5; and 332 as parameters, and the remaining
parameters are derived in the following form

a a3 1oy 1
az = B, aa=?2:|: 72_17_3<72_§)'

1 (1 L _
L= ) (I (p2 +p3)’ P2 = p_3 (§ “n p2ﬂ2l) . /3329 b3 = 6632&1 I
(8.126)

Therefore, an infinite set of solutions depending on the choice of
free variables (331 and fJ32 is obtained. It is suitable to take rational
coeflicients, therefore, the most popular RK3 method is that with
1321 = % and ﬁ32 = 2 Hence, g = %, P3 = %, Qg = 1, P2 = %,
By = =1, pp = % It means that the following one-step formula is
obtained:

kl = f(ti, yi))

ka =hf <ti + lh, vi + 1191),
2 2

ks = hf(ti + h,yi — k1 + 2k2),

R T T j
Yit1 = Yi + le % 3/»2+ 6k3+0(h )

(8.127)

The so far described technique can be applied to find formu-
las with higher order approximations. We rewrite the most popular
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and widely used Runge-Kutta methods [Abramowitz and Stegun

(1978)):
Alternative RK3 method
k1 = f( iy yr)
ko =hf t-+lh 1~+1k
2 =N iT3 s Ui 3 1]

2 2
=hf (ti + gh,yi + 5’»‘2),

1 3
Yir1 = Yi + Zk‘ + Zk;; + O(hY).
Classical RK4 method

ki = f(ti.ui),
ko = hf f"l’l’ll'-}'lk
2 AT 5 Yi B 1)

1 1
ks =hf (t-i + Eh,‘!ﬁ + 5’-‘-2),

ky = hf(t; + h,yi + ks),

1 1 1 1
Yie1 = Yi + Ekl + —ko + —k3 + ~ky + O(h®).

3 3 G
Improved RK4 method
kl = f(flv yi)v

1 1
=hf (ti + ghﬂi + §k1>..

2 1
ky=nhf (ti + §h,yi - §k‘1 - k‘z),

ky=hf(ti +h,yi + k1 — ko + k3),

1 3 3 1 5
Yir1 =¥i t g’\”l + ke + gks + ka + O(R).

8 8 8
Runge-Kutta Cash-Karp method [RKCK]

ky = f(tiyui),

(8.128)

(8.129)

(8.130)
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ti + gh.,yi -+ gkl ) (8131)

3 9
2 gt —ks |,
+ k‘1+40 2)

3
t el TH
it oMYt I

5 10 10 5

11
ti+h,yi — —k1+ l\'2 —k3s+ —

5 70 35
ks =1
da 54 27 27 )
0 1631 1
Ko = BP0 et S, OO

8 55296 512 13824
44275 253 )

ky=hf (t,'-{-gh yi + 3k —'gkz-l-gk:;),

T10592 " * T006 %

37, 250, 125, 512 ’
Yi+l = Yi + 378 —Fk1 + 6211‘3 594/€ 4+ 1771k6+0(h ).

Fehlberg method [RKF45]

ky = f(ti,yi),
B = e Sh g
2= T 3 Ui 1 1
3 3 9
ks =hf (t, + 8h JYi + ﬁkl + 32k2>
12 1932 7200, 7296
ka = hf <” it 57M T 2107 T oy 3)‘
8341, 32832 20440 845
ks = hf (” +hyi+ or™  Toa 2t Tmoa B 4104'““)'
1 6080 41040, 28352
ks = hf (' T3 ¥i = So520™ T 20520 ~ 20520
9205 5043
20520 ' 20520"°
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1
Yir1 = Ui + ————(902880k Ak 5735k,
Vit1 = Ui + moroams (902880k) + 3053664k, + 3855735k
— 1371249k5 + 277020k5) + O(hY). (8.132)

It should be emphasized that there exist even higher order Runge-
Kutta methods. For example, the Prince-Dormand method is noth-
ing but the RK8PD method [Bader and Deuflhard (1983)]. For this
method, ¢ = 13 and computational complexity of one-step in time
is much higher than while applying low order Runge-Kutta meth-
ods. The increase in the integration step does not play a crucial role,
and hence in majority of applications the methods with high order
approximations attract attention rather from a purely scientific side,
since they do not give any essential benefits from the point of view
of computations.

8.1.3.3 Results obtained by different order Runge-Kutta
methods

Since we have a set of various Runge-Kutta methods, a question
appears as to which one among them is the most effective to solve
our problem. In order to get an answer, we compare the results
obtained by different methods with different integration steps in time.
We study a solution to problem (8.46) with boundary initial condi-
tions (8.47) solved with the FDM with difference derivatives of order
O(h'). We compute parametric vibrations of the beam-strip sub-
jected to harmonic excitation P,(t) = Pysin(wgt), where wy = 3 is
the frequency closely located to the fundamental beam frequency.
Amplitude of excitation is chosen in a way that the vibrations are
regular Py = 2.5. As a pattern result, we take that of the RK8PD
method with the integration step dt = 2713,

Since during vibrations a stable regime has been observed, it was
possible to get the case when stationary vibrations coincide with the
pattern with accuracy up to a sign. Therefore, instead of trajectories,
the frequency power spectra, i.e. integral characteristics, should be
compared.

In Fig. 8.6, a comparison of the beam-strip center vibrations and
frequency power spectra for numerical integrations of the RK2 and
RKS8 method, is given. Stationary vibrations coincide up to the sign,
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Fig. 8.6 Comparison of the beam-strip center point vibrations and frequency
power spectra for different Runge-Kutta methods.

Table 8.1 Error of integration of simply supported beam via different
Runge-Kutta methods in %, formula (8.125).

DT RK2 RK2IMP RK4 RK4IMP  RKF45 RKCK  RKS8PD

2-8  0.054002  0.056899  0.053990  0.053990 oo o 0.053989
279 0.026166  0.026890  0.026164  0.026164  0.026164 0.026164 0.026164
2710 0.012219  0.012400 0.012219  0.012219  0.012219  0.012219 0.012219
271 0.005240  0.005284  0.005240  0.005240  0.005240  0.005240 0.005240
2712 0.001748 0.001759 0.001748 0.001748 0.001748 0.001748 0.001748

whereas frequency power spectra coincide with the accuracy up to a
constant component (zero frequency). Power spectra have been trun-
cated up to frequency 2.1wg, and the relative errors for all methods
in comparison to the pattern result have been computed. In Table 8.1
comparison of the relative error for different Runge-Kutta methods
and different time steps has been carried out. The following notation
has been used: RK?2 is the modified Euler method (RK2 second-order
Runge-Kutta method); RK2IMP is the improved Euler method
(RK2 second-order Runge-Kutta method), formula (8.115); RK4 is
the classical fourth-order Runge-Kutta RK4 method, formula (8.129);
RKAIMP is the improved RK4 fourth-order Runge-Kutta method,
formula (8.130); RK F45 is the Fehlberg method (fifth-order Runge-
Kutta method), formula (8.132); RKCK is the Cash-Karp method
(fifth-order Runge-Kutta method), formula (8.131); RK8PD is the
Prince-Dormand method (eight-order Runge-Kutta method).
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Table 8.2 Errors introduced by integration of cos via different Runge-Kutta
methods in %.

DT RK2 RK2IMP RK4 RK4IMP  RKF45 RKCK  RKS8PD

. 9.499220 10.164300 9.461320 9.461320 13.477200 0.991611 1.522040

b 10.149400  11.566600 7.976540 7.976540  0.532819  0.604951  0.636559
—4 7.148090 19.016600 0.834543  0.834543  0.285462  0.288984  0.289736

5 1.016780 17.917600 0.148066 0.148066  0.137571  0.137675 0.137695
=8 0.158051  9.929830 0.0672556 0.067255  0.066866  0.066869 0.066870
=7 0.042727  3.145560 0.032769 0.032769  0.032748  0.032748 0.032748
=8 0.017180  0.850096 0.016011 0.016011  0.016010  0.016010 0.016010
2-9 0.007865  0.218204 0.007722 0.007722  0.007722  0.007722 0.007722
2719 0.03615 0.055427  0.003598 0.003598  0.003598  0.003598 0.003598
D 0.001543  0.014103 0.001541  0.001541  0.001541  0.001541  0.001541
2712 0.000514  0.003573 0.000513 0.000513  0.000513  0.000513 0.000513

The carried out numerical experiments show that the numeri-
cal scheme is unstable for the time step df = 277 for all methods.
Furthermore, the table implies that the numerical algorithm is diver-
gent also for dt = 2% for the Fehelberg and Cash-Karp methods.
The obtained results show that the obtained error practically does
not depend on the method used but it depends on the chosen time
step. This is motivated by a complex part of the right-hand side of
the integrated differential equations, and in result by the multi-mode
vibrational regimes.

For comparison purpose, in Table 8.2 a similar comparison of
results for the integration of differential Eq. (8.133) is conducted,
whose solution is the function y(t) = cos(t):

y'(t)=—y(t), y(0)=0, y(0)=1. (8.133)

Right-hand side of this differential equation is very simple and
does not introduce any errors into the numerical scheme. Resultant
function has very simple form of one-frequency oscillator. Numerical
scheme is sufficiently stable and does not diverge even if large time
steps are applied. Here, we clearly see the advantage of the Runge-
Kutta methods of higher orders. Observe also that the improved
Euler’s method is more suitable for computation compared to the
modified Euler method though both have the same approximation
order. It is clear that the improved Euler method yields reliable
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results for steps less than dt = 278, whereas the modified Euler
method exhibits computational error of 1% for the step dt = 27°.

After getting the required approximation, further increase in accu-
racy does not introduce any qualitative changes into the results.
Therefore, a key role in the choice of a method of integration plays
not only on its computational accuracy, but also on its computa-
tional complexity, i.e. the time needed to achieve reliable results.
In the model problem of integration of Eq. (8.133) via the Cash-
Karp method we deal with the smallest error, and the duration of
computational results is only 15% slower than the (fastest) modi-
fied Euler method. It is obvious that the Cash-Karp method is more
suitable to solve this problem since already for the step dt = 272 the
error is less than 1%. Therefore, owing to the choice of a sufficiently
large computational step, the given method essentially overcomes the
modified Euler’'s method from the point of view of computational
complexity.

However, the so far obtained results are not applicable to the
problem of vibrations of the beam-strip. Errors of all methods are
in practice equal for equal steps. The remaining methods give reli-
able results with an error of 0.5%. For the given problem, the mod-
ified Euler method is remarkable owing to its simplicity. Contrary
to the studied model problem, in our case the majority of compu-
tational time deals with the computation of the right-hand side of
the differential equation. In this case, for the same time step, the
Runge-Kutta methods of higher order require a few times longer
computational time than the modified Euler method. One time step
in the modified Euler method requires three times computations
of the right-hand side of the equation, whereas computations car-
ried out by the improved Euler method, RK4 method, RK4IMP
method, Fehelberg method and Cash—-Carp method requires 4, 4,
7, 6 and 13 times, respectively. For the model’s problem, computa-
tion of the right-hand side has been carried out practically at once,
therefore the higher order methods require typically 15% more com-
putation time. In the case of analysis of the beam-strip vibration,
the Cash-Karp method is beaten by the modified Euler method in
two times. Reported results of the remaining methods have been
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used only to compare and estimate the reliability of the obtained
results.

8.1.4 LE
8.1.4.1 Computation of the LEs spectrum

The LEs play an important role in the theory of dissipative dynamical
systems. They allow to compute a quantitative measure of chaotiza-
tion. Besides, there is a link between LEs and other characteristics
of the chaotization, like the Kolmogorov entropy and the dynami-
cal dimension. The theory of LEs has been developed by Oseledec
[Oseledec (1968)]. Here, we aim at presenting relations between LEs
and mechanical vibrations of structural members.

Linkage between LEs and Kolmogorov entropy has been studied
by Benettin et al. [Benettin et al. (1980)] and rigorously analyzed
by Pesin [Pesin (1976)]. In the literature for chaotic oscillations of
various dynamical system, the Benettin ef al. algorithm [Benettin
et al. (1980)] has been widely applied. In what follows, we give a
background of the algorithm emphasizing on the problems devoted
to direct numerical realization.

We take an arbitrary system composed of n-dimensional vector
x (n-dimensional phase space), and an input system of differential
equations is integrated on a certain interval. Further, we consider
the linearized system for the initial point of the integration inter-
val. We get a new system composed of n vectors. Then this system
is orthonormalized via the Gramm-Schmidt algorithm, and serves
to get a new system of vectors x; for the next computation step.
Logarithms of the normalization coefficients for each of the vec-
tors are averaged on sufficiently large number of iterations, and the
obtained limits of the digital sequences define a spectrum of LEs. It
should be emphasized that the initial system should be in a certain
stationary state, and the phase point at the end of each integra-
tion step serves as the initial condition for the next computational
interval.

In the work Benettin et al. [Benettin et al. (1980)], it has been
shown that a choice of the initial system of vectors x; can be realized
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in an arbitrary manner, and does not influence the limiting val-
ues of LEs.

In practice, the numerical integration of the linearized systems
should be carried out using the same method as it is done for a non-
linear system. It means that the computational complexity of the
algorithm is of n + 1 times larger than for the integration of the orig-
inal input system. In practice, the orthogonalization of the system
should be carried out at each step of the Runge-Kutta method in
order to achieve the required accuracy. Small angles between the vec-
tors x;, and the orthonormalization process causes high error rates. It
means that the computational complexity of the algorithm increases.
For a system with small dimension of the linearized equations, the
problem can be solved analytically.

For example, for the elastic beam-strip the Jacobi matrix of the
system (8.144) has the following form

0 1
I(A1,t) = . (8.134)
—m2(Am3(1 4+ 942) — P,(t)) —¢

Let x1, x2 be eigenvalues of the matrix (8.134), then a solution to
the differential equation ‘% = I x A with the initial condition

A1(0)
A(0) = , (8.135)
A'1(0)

has the following form

(Xl i X2{[—X2A1(0) + A'1(0)]eX1t \
— [=x14:1(0) + A’1(0)]eX2'}
SH= 1 : (8.136)
X1 — X2 {x1[=x2A41(0) + A1 (0)]eX*"
\ — x2[=x1A41(0) + A'1(0)]eX2'} /
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Observe that in general y1. y2 are complex, and in practice the for-
mula has different representation for complex and real x. Therefore,
solutions of the linearized system can be found directly without
applying the numerical integration formula (8.136). It essentially
decreases the computational time and increases the obtained accu-
racy. Comparison of these two ways shows that they are practically
equivalent (the difference is of 0.1%).

Solution (8.136) character is associated with the second method of
determining the LE. The formula implies that the length of vectors
x; exponentially increases/decreases according to the real parts of
X1, X2 Therefore, computation of LEs can be carried out by the direct
averaging of the real parts of the eigenvalues of the Jacobi matrix
along a phase curve. The latter method yields a qualitative picture
of LEs contrary to the classical approach aimed at the approximate
numerical approach.

Therefore, for the beam-strip [from (8.134)], the following char-
acteristic equation is obtained

x(x + €) + T2(Ar3(1 + 9A4%) — P,(t)) = 0, (8.137)

which yields the eigenvalues

2
L = _g + \/‘% — m2(Am2(1 + 9A2) — Py (t)). (8.138)

The spectrum of LEs (x1, x2) has following properties x; + x2 =
—z and yo < 0. It is also relatively easy to formulate a criterion of
chaos:

1/ g2 €
x1 2 0= lim —/ Re (\/7 — w2(Am2(1 + 942) — P,,(f))) = o
0

t—oc {

(8.139)
From the point of view of computational complexity, this method
is the most suitable, since the number of additional actions is min-
imal, and majority of time is spent in the numerical integration of
the nonlinear system (here the problem is solved directly). Further-
more, the speed of convergence of the method is higher compared to

methods based on numerical integrations.
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Iig. 8.7 Comparison of two computational methods to estimate the largest LE
(the BGM).

However, although both methods give the same qualitative
results, they differ with respect to the quantitative results. For
instance, Fig. 8.7 shows a comparison of the largest LEs versus the
external P, for the fixed frequency u being equal to the fundamental
system frequency. The first curve is obtained via the classical Benet-
tin method, the second curve is computed by formula (8.139). The
picture consists of the “color scale” defining the vibrations character,
and it has been obtained on the basis of analysis of the power spectra
of system vibrations.

8.1.4.2 Results reliability and LEs

Numerical experiment shows that the LEs coincide with the “color
scale”, i.e. periodic vibrations correspond to negative/positive value
at the largest LE, whereas bifurcations correspond to x; close to
Zero.

The problem of comparison of different characteristics is impor-
tant while investigating reliability of the obtained results. This is why
we have not limited ourselves to compare the characteristics associ-
ated with the change of one control parameter, but we have car-
ried out a multi-scaled numerical experiment. The obtained results
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(c) (d)

Fig. 8.8 Comparison of the largest LE and “chart” obtained through analy-
sis of the power spectrum (BGM): (a) character of oscillations; (b) LEs; (c)
maximal characteristic exponent depiced as 3D surface:; (d) maximal charac-
teristic exponent depiced as gray gradient (minimal LE (white), maximal LE
(black).

are reported in Fig. 8.8. Figure 8.8(a) is constructed for w € [3:4],
% € [0;10]. Remaining three figures refer to three different ways of
visualization of the maximum LE. Figure 8.8(¢) corresponds to the
largest characteristic exponent presented in the form of a 3D sur-
face. The cross-section close to zero level (—0.05) is shown. Output
of the surface above the cross-sectional plane denotes a transition
of the LE into the space of positive values, i.e. chaotic vibrations.
It is interesting to consider this plane in zones where bifurcations
appear. For instance, let us study the line of first bifurcation. It
is seen how the surface tends to zero level but never crossing it.
Right-hand side Fig. 8.8(b) exhibits the largest exponent in the form
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of grey color. The increase in darkness yields the increase in the
characteristic exponent magnitude. Minimum value of the LE (—0.5)
corresponds to the white color, and the maximum value corresponds
to black color. Drops of bifurcation, zones and periodic vibrations in
chaotic zones are visible. There are clearly visible curves of stiff bifur-
cations, whereas within bifurcation zones there is a border between
the first and the second period doubling bifurcation. Inside there are
drops of periodic vibrations and bifurcations. Furthermore. differ-
ent zones of chaos have different measures of chaotization. In darker
zones, the maximum LE is a little bit larger than in other chaotic
zones. The last Fig. 8.8(d) deals with the cross-section of the surface
of LEs by the plane close to (—0.05) and boundary of a zone where
the exponent tends to zero. This figure is less informative than the
previous one, but it allows to distinguish zones of regular and chaotic
vibrations.

Comparison of the first figure with remaining ones gives the pos-
sibility to estimate the validity of the analysis on the basis of the
power spectrum. It is clear that “charts” coincide with each other
and mutually supplement each other [Awrejeewicz et al. (2002)].
First “chart” yields additional information on the character of one-
frequency vibrations, allows to separate zones with vibrations with
excitation frequencies and vibrations with frequency w/2. “Charts”
of LEs allow to trace the evolution in transitional zones, give a pos-
sibility to estimate the measure of chaotization in different zones
ol chaos. Coincidence of boundaries of fundamental zones allows
to conclude that the analysis of vibrations on the basis of power
spectrum yields the results being in agreement with other meth-
ods, and can be applied to estimate the general chart of system

bhehavior.

8.1.4.3  Stability versus maximal deflection

In order to describe scenarios of the system behavior with respect to
its regular/chaotic dynamics it is useful to consider LEs and scales
obtained on the basis of analysis of the power spectra together with
purely mechanical characteristics like for instance maximal deflec-
tion. The latter quantity plays an important role in monitoring
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Fig. 8.9 Comparison of the maximum deflection, maximum LE and a “scale”
constructed using analysis of the power spectrum (the BGM).

mechanical properties of the analyzed system. Figure 8.9 shows all
three parameters.

Comparison of all three characteristics implies that all of them
are coupled and mutually supplement each other. On the graph of
maximum deflection, boundaries of the fundamental zones are visi-
ble. They are characterized by jump-type changes of the maximum
deflection, i.e. the system suffers from a sudden stability loss associ-
ated with quantitative changes in mechanical regimes.

Zones of chaos differ remarkably from zones of periodic vibra-
tions. In the periodic vibration zones, the maximal deflection increase
occurs smoothly contrary to chaotic zones where the jumps appear.
In comparison to the scale, the maximum deflection yields additional
information for periodic vibrations. For example, for Py = 4.8 and
Py = 9.4 the maximum deflection exhibits smooth jumps, which are
not visible on the scale. Comparison of the maximum deflection with
the maximum LE gives a picture of a “strange” system behavior.
The LE points tend to zero, i.e. the system is on the threshold of
transition into a new regime. These jumps remarkably differ from
the changes in the maximum deflection on the boundaries of zones,
since they are more smooth and do not change the smoothness of
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the curve. Consideration of all exponents allows to yield wider and
deeper conclusions regarding the system behavior. Non-homogeneity
of one-frequency zones of vibrations and existence of the internal
border are clearly visible on the curves of maximum deflection and
maximum LE. It should be emphasized that the obtained depen-
dencies of maximum deflection can be compared with estimation of
the maximum LE. In many cases, when a computation of the LE
spectrum is difficult owing to the complex form of the right-hand
side of the differential equation, one may take into account only the
maximum deflection.

8.1.5 Vibrations of flexible panels with infinite length
8.1.5.1 The BGM

In order to verify the reliability of the numerical realization of the
BGM a series of the numerical experiments has been carried out. At
first, we define the fundamental frequency of the system. We con-
sider the free vibration of the beam-strip for ¢ = 0 and with P,(t) =
q(t) = 0 for the initial boundary conditions (8.47)—(8.50) (simple sup-
port). We get the particular case of the Duffing equation (8.62) and
hence

Ay = — (14 343) Aar'A,. (8.140)

For small vibrations, we can neglect the nonlinear term influence.
and the fundamental frequency can be defined by the following lin-
carized equation

Ay = -l AL (8.141)

Its solution is A; = cos (wot + o), and the frequency wy = 72 V.

The numerical experiment has been carried out for Poisson’s
coefficient » = 0.3. The fundamental frequency is wy = 2.9866.
The following parameters are fixed within the numerical experi-
ment: £ = 0, amplitude of initial deflection ap = 0.01, time step
dt = 277 = 0.0078125, and the integration is carried out by the
RK2 method. In Fig. 8.10, time history of the beam-strip central
point and the power spectrum are reported. As it can be seen from
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Fig. 8.10 Free vibrations (£ = 0) of the beam-strip (the BGM).

the figure, the amplitude of the harmonic vibration is 0.01, whereas
its non-dimensional, period 7" = 2.10156 and the angular frequency
w= 27" = 2.9897. Therefore, the introduced numerical error is less
than 1%. This simple experiment verifies the validity of the first
approximation of BGM.

Additional verification of the result can be yielded by a solution
to the static problem via the “set up” method. Static problems of
structural members are widely described and investigated. Here, we
aim only at the so-called problem of buckling. For this purpose, we
consider the problem of longitudinal beam strip loading.

Let the longitudinal load Py(t) = P be an infinite length impulse.
Depending on the value of the external load, the beam-strip will
deflect up to a certain amplitude. For small values of the external
force the deflection is zero, but after a certain critical value the deflec-
tion will be different from zero and starts to increase with the increase
in P;. In order to solve the static problem via the set-up method, we
consider the beam-strip with the small initial deflection ag = 0.01
in the strongly dissipative medium (¢ = 10) under the action of the
infinite length impulse. As a result, for each value of the external
force we can obtain the curve shown in Fig. 8.11(a). The threshold
value of the deflection corresponds to a solution of the static prob-
lem for the given load (in our example, P, = 2.5). Therefore, the
function Wy(Py) is constructed [Fig. 8.11(b)]. Integration has been
carried out by the second, RK2 method. Integration has been with
time step dt = 278 = 0.00390625.
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Fig. 8.11 Buckling effect while solving the static problem via the set-up method
(BGM).

In order to get the analytical form of this dependence, the sta-
tionary solution of Eq. (8.62) should be considered

(Am3(1 4+ 3A%) — P)Aym? =0, (8.142)
1/ P
Ay =#/3 (,\_7:2 = 1). (8.143)

It is clear that in the interval P, € [0; /\7r2], solution (8.143) has
no physical meaning, and hence zero solution is obtained. In interval
Py € [0; o], the results of the numerical experiment coincide in full
with the analytical solution. The sign of the numerical solution is
defined by a sign of the initial deflection. For a positive (negative)
initial deflection, the positive (negative) deflection branch is realized.

One of the important questions in the BGM is the choice of
an approximation order that would guarantee a sufficient reliability
level. The first approximation has a simple character and opens the
door for another class of problems. Solution in higher approximations
yields a system with a large system of degrees of freedom (DOFs),
and a more complex behavior in comparison to the first approxima-
tion arises. In this work, we aim at a determination of the order of
the series guaranteeing qualitative reliable results. The stream con-
vengence consequence principally cannot be achieved in the problem
of nonlinear dynamics owing to the dynamical instability of the input
problem.
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Fig. 8.12 Stream and integral convergence in a zone of harmonic vibration
(BGM).

In Figs. 8.12 and 8.13, different orders of approximation has been
applied. The beam-strip subject to harmonic load ¢(t) = go sin(wgt)
has been studied, where wy stands for the system fundamental fre-
quency.

We have considered two characteristic points: gg = 900 — the sys-
tem is in a harmonic regime (Fig. 8.12) and gy = 1200 — the system
is in a chaotic regime (Fig. 8.13). In each of the pictures, a com-
parison of vibrations of the central beam point for different orders
of approximation and comparison of integral characteristics (power
spectra) are carried out. Vibrations in the chosen beam points have
sufficiently large amplitudes (order of 5-6 beam thickness), i.e. non-
linear terms play a key role in Eq. (8.61). Integration has been carried
out by the RK2 method with the step in time dt = 278 = 0.00390625.

One of the aims of this work is to investigate scenarios of tran-
sition from periodic to chaotic vibrations. It is important to have a
general imagination of the system behavior regarding the external
excitation parameters. Therefore, it is necessary to construct the
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Fig. 8.13  Stream and integral convergence in chaotic vibrations (BGM).

so-called charts of plate vibrations for each type of the boundary
conditions and external load excitation. A chart represents the plane
(A, w), where A is the control parameter and P, stands for the exci-
tation amplitude. Each point of the chart is denoted by a color char-
acterizing the regime of vibrations. Therefore, we get informative
visual representation of the system behavior. Character of vibrations
is defined in full by the beam center point vibrations (z = 0.5), since
all of the remaining points move in a synchronized manner. For each
pair of the parameters (A, w), on the basis of analysis of the Fourier
spectrum of the beam center point vibrations, the vibration charac-
ter is defined. While constructing the chart, the frequency interval w
from %ﬂ to ﬁu where wy is the plate fundamental frequency for the
given boundary conditions, is analyzed. Interval of changes of A has
been chosen in a way that the maximum beam deflection does not
achieve the value of seven beam thickness. Hence, the hypothesis of
the average deflection taking into account the geometric nonlineari-
ties has been satisfied.
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Fig. 8.14 Charts of vibrations for the transversal load (BGM).

We have already considered the problem regarding the BGM con-
vergence for fixed characteristic pairs (gp, w) corresponding to peri-
odic and chaotic vibrations. We should ensure that the results of
different approximations coincide for whole choice of the considered
parameters. Therefore, the vibration charts have been computed for
the transversal load. In Fig. 8.14, the charts for the first four series of
BGM have been presented. The integration has been carried out via
the RK2 method with time step dt = 27% = 0.00390625. One may
distingnish the difference between the first and the second approxi-
mation, where further increase in the approximation terms does not
bring any quantitative changes in the chart.

The obtained results allow to conclude that in order to get quali-
tative results it is sufficient to consider only three terms of the series.
This is enough to separate zones of periodic, chaotic or quasi-periodic
dynamics.

We have also analyzed the problem of convergence regard-
ing time step and the applied integration method. The given
numerical experiments with application of the second-order Runge-
Kutta method (RK2IMP), fourth-order Runge Kutta method (RK4,

-
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RK4IMP), fourth-order modified Runge-Kutta method (Fehlberg
method (RKF45) and Cash-Karp method RKCK), ecighth-order
Runge-Kutta method (Prince method-Dormand method RKSPD)
of the accuracy order and implicit Gear methods (GEAR1 and
GEAR2). Steps in time have been chosen from 2-7 to 2 ' uniformly
along the logarithmic scale.

Principle differences between the results obtained through dif-
ferent methods have not been found, hence in the fundamental
numerical experiments the RK2 method with time step df = 2% =
0.00390625 has been used (it is most suitable one from the point of
computations). We have also constructed the chart for the transver-
sal load P,(t) = Pysin(wt). As it has been mentioned carlier. in this
case we may take only the first term of the series and we get the
Duffing Eq. (8.62). Then, changing the variables A;(t) = -’14/(’) we
reduce the problem to the following one

A=Ay,
i ! 2 | ul 9 5 (8.144)
A] =—cA ((/\71'“ (l -+ 3:1]') = 1),(1)) :'hﬁ_) F“.'l].

In Fig. 8.15, the chart obtained via BGM is presented for the ini-
tial boundary conditions (8.47)-(8.50). Integration has been carried
out by the RK2 method with time step dt = 27° = 0.00390625.

8 Dasped videations e - Bltseratizas [« e

Fig. 8.15  Chart of vibrations for the longitudinal load (BGM).
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The chart investigation allowed to separate the following charac-
teristic regimes:

(i) This vibration character cannot be exhibited while applying the
transversal load, and hence the variant of the longitudinal load
is of a particular interest. In this case, we can observe a stiff
bifurcation, i.e. the jump-type transition from damped to peri-
odic vibrations while negligibly increasing the amplitude of the
external load. Two characteristic cases of vibrations have been
observed after the stiff bifurcations: stationary one-frequency
vibrations with the synchronized frequency equal to excitation
frequency, and the subharmonic vibrations with w,/2.

(ii) After the first stiff bifurcation, a further increase in the exci-
tation amplitude shifts the system dynamics into a periodic
regime. As it has been already mentioned, either harmonic or
a subharmonic motion with w,/2 has been exhibited. There are
also narrow subharmonic zones with frequency equal to w),/4.

(iii) Chaotic zones are of particular interest. Here we apply only
frequency power spectrum to measure chaotic dynamics and the
vibration zones.

(iv) In between zones of different dynamics one may observe small
transitional zones associated with soft type bifurcations. Vibra-
tions in those zones are still regular ones, but the trajectories of
vibrations are not so strongly stable as it happened in periodic
regimes. The associated power spectrum exhibits the occurrence
of peaks on subharmonic frequencies.

We analyze the chart given in Fig. 8.15 in a more detailed manner.
We consider the chart constructed by cross-sections along the axis
P,, we change the amplitude of the external excitation but keeping
a fixed excitation frequency. This way of analysis is based on the
consideration of the whole frequency interval, which can be divided
into three characteristic zones with the following magnitude of the
frequencies: [1.5;2.2] — low frequencies, [2.2; 3.8] — average frequen-
cies, [3.8;4.5] — high frequencies.

For small amplitudes of the excitation force the delivered energy
is not sufficient to generate undamped vibrations. The bottom part
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of the chart is associated with damped vibrations. The upper border
of this zone corresponds to the first stiff bifurcation. In other words,
a small increase in the external excitation amplitude changes qualita-
tively the picture of vibrations, i.e. there is a transition from damped
to periodic vibrations. We may distingnish two characteristic cases
after the stiff bifurcation: either the vibration frequency is equal to
wp or wy/2. For zones of low and high frequencies we have periodic
vibrations with <2, whereas in a zone of average frequencies we have
wp. It has been observed numerically that the beam vibrations are
realized with three frequencies w,/4, w,/2, w,. We consider the sce-
nario of successive bifurcations in a zone of average frequencies. After
the stiff bifurcation we have periodic vibrations of frequency wp. Suc-
cessive increase in P, implies a series of bifurcations and a transition
to chaotic vibrations. Similar scheme of the frequency switching is
also characteristic for two other zones, but instead of wp, we have
wp/2, i.e. subharmonic vibrations appear. On the chart, there are
separated zones where there is subharmonic vibration with w,/4, and
zones without bifurcations. Zones with bifurcations exhibit two char-
acteristic cases either a transition from periodic to chaotic vibrations
or associated with zones located within periodic zones.

In what follows, we consider separately particular cases on bound-
aries between frequency zones. Here jump-type frequency switching
is observed without any series either of bifurcations or a transition
through a chaotic regime. The mentioned zones of frequencies are
located in intervals [2.1;2.2] and [3.8;4.2]. After the first stiff bifur-
cation periodic, vibrations appear. Further, on a short interval of P,,
values of vibrations are again damped. After that, stiff bifurcation
takes place again, and a periodic solution with a different frequency
oceurs.

More careful attention allows to distinguish the similarity between
the chart’s parts. In general, all three frequency zones are self-similar.
This is particularly exhibited in a zone of small amplitude of exci-
tations. Shapes of areas are repeated in three zones: the larger the
frequency, the larger is the area. As it has been already mentioned,
the neighborhood zones differ from each other by an order of the
frequency switching for periodic vibrations. Therefore, similar zones
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may have the same qualitative character of vibrations but they may
differ in quantitative characteristics.

Since in certain parts a transition into chaos is associated with a
series of bifurcations, we have investigated a correspondence of the
observed series behavior to the Feigenbaum scenario [Awrejcewicz
et al. (2002); Krysko et al. (2002)].

We have carefully studied the first cascade of bifurcations while
transiting into chaos in a zone of averaged frequencies. We have
detected eight bifurcations. For example, we report here the case of
the Feigenbaum constant computation for the fundamental frequency
wo = 3 (Table 8.3). Values of C; are obtained from the following rela-
tion

P — Pn—l
Ci = ‘PZ""'I__IP;:T‘ (8.145)
These results correspond well to the theoretical values
R PRl -

In Fig. 8.16, the spectrum for w = 3, P, = 2.616819 associated
with nine bifurcations is shown.

It is interesting to follow how the largest LE behaves in the series
of Hopf bifurcations. In Fig. 8.17, the largest LE behavior while
approaching to the critical point of a transition to chaos is shown.
On the axis Oz, we have logarithmic scale and the first four Hopf
bifurcations are visible. After achieving the successive bifurcation,
the largest LE tends to zero and then decreases again.

Process of chaotic vibrations in the parameters plane (P, w)
begins with a period doubling bifurcation. Series of these bifurca-
tions is easily observed on the power spectrum (see Fig. 8.16). Up to
eight bifurcations have been monitored. The process of chaotization

Table 8.3 Amplitude of the external load in the first series of bifurcations.

1 2 3 4 5 6 7 8

P, 25732 26036 2.6136 2.61615 2.616679 2.616790 2.616814 2.616819
Ci 3.028 3.975 4.770 4.759 4.708 4.683

Panels 401

os [ [ 2 s ) L T L

(a) (1:)

Fig. 8.16 Power spectra with eight bifurcations (BGM) for w, = 3, P, =
2.616819 (a) and a part of the graph a (b).
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Fig. 8.17 Largest LE exhibited by the series of Hopf bifurcations.

observed via the frequency spectrum is characterized by a smooth
noising of the spectrum base. Sharp peaks remain on the fundamen-
tal frequencies and their harmonics.

A series of the period doubling bifurcations implies occurrence of
the infinite cascade of the period doubling bifurcations as the mecha-
nism of transition into chaotic vibrations [Afraimovich et al. (1986):
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Arnold (1979); Astahov and Bezruchko (1987)]. and also fits prop-
erties of similarity yielded by the theory of universality. For many
dynamical systems with continuous time, five or more period dou-
bling bifurcations have been illustrated and studied in references
[Franceschini (1980); Franceschini and Tabaldi (1979): Grutchfield
and Farmer (1980)].

A route to chaos via period doubling bifurcations and occurrence
of chaotic (Smale) attractors (see [Shilnikov (1956)]) yield the so-
called Smale horseshoe structure. The obtained attractors are either
called Feigenbaum attractors or strange attractors [Arneodo and Col-
let (1985); Arneodo and Thual (1985)]. Particular feature of the
Smale attractor relies on keeping maximum harmonic value asso-
ciated with the fundamental frequency after the occurrence of the
broadband spectrum. In Fig. 8.18, a series of the period doubling
bifurcations tending to the Smale attractor is presented. The follow-
ing time histories w(t), Poincaré sections w(w) and frequency power
spectra are given. It is also important to trace the evolution of the
attractor along parameter P for eigenfrequency wy = 3. In Fig. 8.19,
the most characteristic attractors and the corresponding Poincaré
sections are presented.

In what follows, we explain the observed nonlinear phenomena
using the qualitative theory of differential equations. When a stable
limit cycle is born as a result of the Hopf bifurcation, the previous
stable equilibrium point becomes unstable of the saddle-focus type
with one-dimensional stable W* and two-dimensional unstable W*
manifolds.

Then two multiplicators of the limit cycle become complex conju-
gated. Now W starts wrapping on the limit cycle creating configura-
tions similar to [Shilnikov (1956)]. Increase in the load over the criti-
cality may lead to the following behavior. W* and W* approach each
other up to the occurrence of a homoclinic curve of the saddle-focus
type. In this case, the complex structure is created which implies
the existence of a chaotic attractor (the name of this attractor is not
uniquely defined). In references [Arneodo and Collet (1985); Arneodo
and Thual (1985)] it is called the serew-type attractor. In Shilnikov’s
work [Shilnikov (1956)], it is called the spiral attractor. The typical

Panels 403

- -

Po=277

Fig. 8.18 Time histories, phase portraits and frequency power spectra for differ-
ent Py: (a) 2.61, (b) 2.7, (c) 2.77 in the neighborhood of the smale attractor.

situation occurs when period doubling bifurcations take place before
the occurrence of Shilnikov’s attractor, and then a transition to the
Smale attractor takes place.

On the other hand, while moving along the parameter the follow-
ing situation is possible: there is no loop, but Shilnikov's attractor
does exist. In other words, there is a special type of attractor which
can be identified only by its vicinity to the bifurcation manifold with
the saddle-focus loop. The existence of an attractor with defined
properties being characteristic for the Shilnikov attractor has been
illustrated in the reference [Arneodo and Thual (1985)]. Therefore,
criterions are needed allowing to distinguish Smale attractors from
other attractors located in the vicinity of a saddle-focus loop. One of
such criterions is motivated by a fact that in chaos associated with the
Smale attractor, time instants for which maxima of oscillations are



404 Deterministic Chaos in One-Dimensional Continuous Systems

Po=3.07

Fig. 8.19  Evolution of attractors and Poincaré maps.

regularly distributed, whereas within Shilnikov’s type chaotic attrac-
tor they constitute a stochastic sequence.

Besides the Smale and Shilnikov attractors. we have also Rossler
type attractors. We demonstrate Rossler type attractors occurred
after a series of period doubling bifurcations. In Fig. 8.20 a scenario
yielding its birth for the values Py = 4: 4.48: 4.5 is reported. The last
of the phase portraits is the Rossler attractor. In Fig. 8.20 w(t), w(w)
and the power spectrum are shown.

8.1.5.2  Numerical experiment (FDM)
Convergence of the difference scheme

We study a convergence of the explicit scheme of problem (8.71) and
(8.72) versus an order of approximation of the difference derivatives.
As the pattern problem we consider the case of parametric vibrations
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ent. Po: (a) 4.0, (b) 4.48, (¢) 4.5 in the neighborhood of the Rossler attractor.

with the external load P,.(t) = P, sin(wgt), where wy is the fundamen-
tal frequency of the system, g(x, t) = 0 and with the boundary /initial
condition (8.49)-(8.52). In comparison to the boundary/initial
condition (8.47)-(8.50) and (8.48)-(8.51) the considered problem
is not symmetric, and hence we analyze the difference scheme
convergence.

We are aimed at an estimation of the vibrations character versus
the excitation amplitnde. From a point of view of applied mechanics
it is important to define zones of changes of the excitation ampli-
tude where vibrations are chaotic. Therefore, we tried to achieve
the integral convergence of the method. For this purpose scales for
various partitions, used approximations order and integration meth-
ods have been constructed. A “scale” presents a color representation
of a vibration character versus the excitation amplitude F,;. These
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scales have been constructed on the basis of analysis of the vibra-
tion power spectra of the beam center. Namely, for each value of B,
simulation has been carried out, then the power spectrum of vibra-
tions of the beam center has been obtained, and finally the vibration
beam regime has been defined. Each regime is marked with a differ-
ent color. The following characteristic regimes have been detected:
damped vibrations — energy introduced by external force is too small
to beat the dissipative forces; harmonic vibrations with frequency
wy — synchronization between the system and external force; sub-
harmonic vibrations with frequency %2 period doubling bifurcations;
chaotic vibrations.

In Fig. 8.21 scales regarding the explicit method are reported.
For the boundary initial conditions (8.49)-(8.52) the fundamental
frequency wy = 5, whereas for the interval of Py variations [0;50]
this corresponds to the boundaries, where assumptions regarding
applicability of theory of shallow plates are valid, i.e. deflection of
the beam should not be larger than its 6-7 thickness. As a pattern
result we consider the scales obtained for n = 32, dt = 271!, whereas
the numerical integration has been carried out via the eighth-order
method RK8PD. Analysis of the obtained results yields a conclusion
that the integral convergence is achieved for partition n = 16, dt =
2-% for the applied RK2 method. Approximation of order O(h?)
smoothes higher frequencies of the signals, and hence for large values
of the excitation amplitude the difference scheme does not properly
enough present the real system behavior. On the other hand, in the
case of sufficient flat transition, functions of O(h%) (Fig. 8.25) amplify
high frequencies input, and in result the difference scheme is diver-
gent (n = 16, dt = 27® for integration via the RK2 method). Finally,
the results obtained by the RK2 method are reliable, and there is no
need to apply higher orders Runge Kutta methods.

In Fig. 8.21, for comparison purpose, numerous results obtained
via the implicit method with different values of the weight coeffi-
cient ¢ are reported. Implicit difference schemes are more stable,
which allows to apply larger steps in time than for explicit schemes
for the same partitions of the space coordinates. Stability of the
implicit difference scheme is guaranteed by a strong smoothing of
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Fig. 8.21 Convergence of explicit difference methods with various approximation
orders,

high frequencies, but simultaneously frequencies associated with the
fundamental system energy are also smoothened. This is why for the
weight coefficient o = 0.5, the stability of the difference scheme has
not been achieved. The result being close to the pattern ones can be
only achieved for the weight coefficient o ~ 1. which in fact reduces
the problem to that of integration via the Euler method. Besides,
the implicit scheme for equivalent partitions has larger computa-
tional complexity than the associated explicit scheme. Only for o = 0
the method yields a computational benefit, since the computation of
the operator Z on the previous layer can be avoided. In Fig. 8.22 the
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Fig. 8.22 Comparison with the implicit Cranck-Nicholson scheme.

Table 8.4 Square average errors of different methods.

n 8 12 14 16 18 20 32

0(112) l.lde+2 512e+1 3.76e+1 288e+1 228e¢+1 18de+1 T.17e+0
O(h*) 1.18¢+1 24le+0 13le+0 7.69e—1 48le—1 3.16e—1 4.82e—2
O(h?) 1.29e40 120e—1 482 —2 218 —2 1.08¢—2 575e—3 3.45e—4

PS 1.88¢e+0 1.90e—3 3.20e—5 246e—7 236e—5 3.1le—5 T.12e+1

scales for the implicit method n = 32, dt = 27! of approximation
order O(h*) o = 0; 0.5; 1, and the pattern result, explicit method
of n =32, dt =27 as well as integration via the RK8PD method
with approximation of the spatial derivatives O(h®) are reported.

A pseudo-spectral method with a Chebyshev mesh strongly dif-
fers from the explicit and implicit methods since points of the mesh
have an influence on the values of the partial derivatives, not only on
the neighboring ones. The latter fact should theoretically increase an
accuracy of the being computed derivatives, but the high order inter-
polating polynomials oscillate on the interval ends (the Gibbs effect).
This causes a lack of accuracy of the computed derivatives. In order
to demonstrate this effect we consider the model problem devoted
to computation of the fourth derivative. For the boundary condi-
tions of the Dirichlet—Neumann problem (8.48) we take the func-
tion w(x) = 1 — cos(2wx), which satisfies the boundary conditions.
In Table 8.4 the values of the square averaged numerical error of
the 4th derivative computed either by the psendo-spectral method
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Fig. 8.23 Square average errors in computation of the fourth derivative.

or via the analytical value w!V(z) = 167 cos(27rz) are given. In
this table, also data for difference derivatives of orders O(h?), O(h*)
and O(h%) are reported. The data allow to get the following conclu-
sion: the pseudo-spectral method yields higher order accuracy than
the difference methods, but the error increases when the number
of partitions increases. The table shows that for n = 16 the opti-
mal partition for the pseudo-spectral method is obtained, and the
increase in n implies a stability loss of the computational scheme.
For the difference method the dependence of the error on a number
of partitions yields a linear function in the logarithmic coordinates,
and it monotonously decreases with the increase in n (Fig. 8.23).
In order to get an imagination of the relative error of the method,
it should be emphasized that the interval of the fourth derivative
changes [—1560: 1560], i.e. the same average error of order 1 cor-
responds to quantities of 0.01. For the first and second derivatives,
the dependence of the error on n has the same character as in all
considered cases.

As in the case of the implicit method, in Fig. 8.24 a comparison
of the pattern result of the implicit method (n = 32, dt = 2711,
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Fig. 8.24 Comparison of the pseudo-spectral method versus the Chebyshey
mesh.

Chebyshev mesh n=12
(a)

Regular mesh n=12

(b)

Fig. 8.25 The Chebyshev mesh (a) versus the regular mesh (b).

with integration of the RK8PD method and approximation of the
spatial derivatives O(h%)) with the results obtained via the psendo-
spectral method for varions partitions is presented. Observe that
steps of integration in time have been chosen smaller than in the case
of analogous partition and the same integration method regarding
the regular mesh. For n = 8, dt = 279 (for regular mesh we have
dt = 27%). This paradoxal phenomenon can be explained in the fol-
lowing manner: boundary layer points of the Chebyshev mesh are
located essentially closer to the edge than in the case of the reg-
ular mesh (Fig. 8.25), and these points are most sensitive to the
scheme errors, since their absolute values are always small (owing to
the edges fixation — Dirichlet condition), whereas, on the contrary,
the fourth derivative has the maximum value. Thercfore, the error
of the derivatives computation implies divergence of the difference
scheme. We separately consider the problem of vibrations conver-
gence for the explicit method.
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(b)

Fig. 8.26  Integral convergence in chaos: time histories and frequency power spec-
tra for n= 16,dt = 27% (a) and n = 32,dt = 27" (b).

For example, in Fig. 8.26 vibratious of the beam center for var-
ious spatial partitions, as well as the power spectra of these sig-
nals (parameters of the external load Py = 7, wp = 5, partitions
n=16, dt =27% and n = 32, dt = 27!, integration has been car-
ried out by the RK4 method, spatial derivatives are approximated
by order of O(h') are reported. It is obvious that the integral con-
vergence is achieved (it is exhibited by the power spectra), but a full
coincidence of the trajectories is not achieved. For both partitions the
results qualitatively coincide, which means that the further increase
in the spatial partition will not change the so far obtained result, i.e.
chaotic zones are reliable and not introduced by the computational
errors. The figure clearly shows that the signals coincide in full on a
short initial time interval, but then they diverge and after that no
correlation exists.

The influence of this problem is similar to that of simple supports
of the edges considered earlier, and it can be solved with the BGM
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with higher approximations. However, we use only the FDM since
it is the most general and does not allow to introduce additional
mathematical constructions on the contrary to the Bubnov-Galerkin
approach. Fundamental frequency of the studied system essentially
depends on the used boundary condition. For instance, for simple
support and clamping (8.47)-(8.50) and (8.48)-(8.51) we may derive
analytical formulas to define the fundamental frequency value: wy =
72V ~ 2.98 and wy = (g})"n-’\/X ~ (.705, respectively.

The fundamental frequency has been also defined numerically. We
take the dissipation term £ = 0, and we introduce the initial buckling
ap = 0.01. Integration parameters follow: spatial partition n = 16,
time step di = 27% = 0.00390625. In Fig. 8.27 vibrations of the
beam center are shown as well as the power spectrum of these vibra-
tions. Time history indicates the periodic vibrations, and the power
spectrum exhibits only one frequency vibrations, i.e. w = 6.761. The
error magnitude introduced by nmmerical integration is less than 1%,
which validates reliability of the obtained results.

Initially, the problem of the convergence of the difference scheme
has been investigated. The Runge principle has been used to define
the minimum partition required to get the reliable results regarding
a chart construction. In Fig. 8.28 scales of the vibrations character
constructed for different partitions (w = 6.7, 0 < F, < 50) are
reported.

- . 5
0,008} 8
0,008 El
0,004, 8
0.002 9
W oo A <10
<0.002 1"r
0,004 12
0,008 13
-0.008 14t
Bl T T W62 25 3 35 4 18y 2 4 o [) 10 12 14
T ®
(1) (b)

Fig. 8.27 Free vibrations in problem with clamping (FDM): time histories (a)
and frequency power spectranm (b).
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Fig. 8.28 Convergence ol the explicit difference methods for various approxima-
tions for problems with clamping,.

[ TVe—" LT [T (re— (o ™

Fig. 8.29  Chart of vibrations for the problem with clamping (FFDM).

[t can been seen that the necessary computational accuracy is
achieved for n = 16, dt = 277 = 0.0078125. This partition has
been used to construct the chart given in Fig. 8.29. The fundamen-
tal frequency wy = 6.7, and hence the considered interval for w is
[4.0:10.0]. The general behavior of the system is similar to that pre-
viously studied for the simply supported beam, but there exist also
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Fig. 8.30 Period doubling bifurcation (see text for more description).

a few peculiarities. Namely, in spite of period doubling bifurcation
also the period tripling bifurcations have been obtained (Fig. 8.30).
In Fig. 8.30 the fundamental characteristics are shown: time histo-
ries w(t), phase portraits w(w), power spectrum and Poincaré maps
(w = 8.75, Py = 25.8). Unfortunately, it was difficult to estimate
borders between zones in the series of period tripling bifurcation,
and therefore we were unable to estimate the Feigenbaum constant
for this case. As it has been seen from the power spectrum, after
the first triple period bifurcation a series of bifurcations appears,
but they are different from either period doubling or period tripling
bifurcations. This phenomenon requires further investigation.

For the studied problem a transition to chaos via period doubling
bifurcations through the Feigenbaum scenario has been detected. In
Table 8.5 the data used for the Feigenbaum constant computation
associated with the fundamental frequency is given. The obtained
results coincide well with the theoretical value Cx = 4.6692 (formula
(8.146)). As in previous case, we have observed a series of eight Hopf
bifurcations.
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Table 8.5 P, (amplitude of excitation) corresponding to the first series of bifur-
cations in the problem with clamping (FDM).

1 2 3 |l 5 6 7 8
P, 14.6836  14.8441 149027 14.9150 14.9178 14.9184 14,9185 14.9186
(& 2.7395 4.7368 4.5069 4.5705 4.4971 4.6358
; B " u'n;;omnl mnxfco:--‘if.»‘e"'ﬂcggn'u esp -8/ 98))

e WK (0,29 4)/ (0.9 94)

s

0 i L ! " e
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Fig. 831 Two-piece wise linear (a) and exponential (b) stress-strain
dependence.

8.1.6 Geometric and physical nonlinearities

We consider the problem with physical nonlinearity for two variants
of stress-strain relations: linear dependence of two linear pieces and
the exponential transition into a plastic zone. These possibilities are
presented in Fig. 8.31. Important role plays here a ratio of the linear
beam with the ratio § = 100. Hence, the following variants of the
dependence o (e) has been considered:

(i) Two piece-wise linear dependence:

_ [ke;, fore<es,
o(e) = {ke_.,‘ for e > e;. (8.147)

(if) Exponential dependence
e

o(e) = ke, (1-exp (-2 ). (8.148)

€y
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The common point of two straight lines e, corresponds to the crit-
ical deformation, after which a plastic zone appears. The coefficient
of a slope of two piecewise linear characteristics has been chosen in
a way that on the linear part of the dependence o (¢) the govern-
ing equations should coincide in full with the equations taking into
account only the geometric nonlinearity. All numerical experiments
have been carried out for the following fixed parameters: & = 0.39
and e; = 9.8.

For the problems with physical nonlinearity the fundamental
experiments have been given in frame of the nonlinear geometri-
cal problem statement: charts of vibrations types. the spectrum of
LEs, as well different variants of the beam support. Besides, we have
added one more parameter: beam deflection for frozen time instants
taking into account plastic zones. Their analysis allows to estimate
the plasticity level of the beam, i.e. to define, which part of the beam
cross-section moved to a zone of plasticity.

In Fig. 8.32 a comparison of the fundamental characteristics (max-
imum deflection, largest LE and scales) for the excited longitudi-
nal vibrations with the fundamental frequency (problem with simple
support (8.47)-(8.50)) is shown. For small amplitudes of excitation

Fig. 8.32 Comparison of fonr dynamical characteristics for longitudinal excita-
tion with the fundamental frequency (see text for more details).
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amplitude, the deformations do not achieve plastic zones and solu-
tions coincide in full. The increase in the amplitude of excitation
yvields the increase in the amplitude of vibrations of the beam, and
hence its deformation is increased. For deflections of order of two
beam thickness a zone of plastic deformation is visible in the cen-
tral area of the beam. From this time instant solutions of geometri-
cal nonlinear problem do not coincide with the physical solution of
nonlinear problem. It should be emphasized that for a physically non-
linear problem we should consider essentially smaller interval of the
external amplitude changes. As it can be seen from the figure, after
a certain value the beam achieving the maximum deflection finally
transits into a chaotic zone, and the maximum deflection rapidly
increases. For this deflection magnitude the applied equations are
not useful.

It is interesting to compare the charts of vibrations for the prob-
lem of physical nonlinearity and more simple modeling variant tak-
ing into account the geometric nonlinearity. In Fig. 8.33 the charts
regarding the simple support of two edges are shown. The left chart
presents a solution to geometrically nonlinear problem (a part of the
chart (8.26)), whereas the right corresponds to the problem with two
picce-wise characteristics (8.26). As it has been seen the charts fully
coincide for small amplitudes of the external load, but the increase in
the excitation amplitudes introduces the difference, and for large dis-
placements the charts are clearly different. For a comparison, in Fig.
8.34 a chart for the exponential nonlinearity is reported. Obviously

IMig. 8.33  Comparison of vibration charts.
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Fig. 8.34 Chart of vibration types for a physical nonlinearity in exponential
form.

the nonlinearity influences the chart of vibrations, and for different
types of nonlinearities considered we expect an occurrence of new
cffects.

In order to distinguish a difference between the geometric and
physical nonlinearities and only the geometric nonlinearity more
deeply, it should be observed that the beam transits from a zone of
clastic deformations to a zone of plastic deformations. For this rea-
son we have applied beam cross-sections for different time instants
to follow beam deflection for different values of the amplitude of the
external load for the cases of clamping (Fig. 8.35). In this figure the
beam cross-section corresponding to its maximum deflection are pre-
sented for Py € [7; 20| with the step of APy = 0.2. This variant
of the boundary initial conditions is of more interest comparing to
the case of the simple beam support, since the beam has three zones
of transitions into plastic deformations. The central zone and points
of clamping exhibit maximum deformations and therefore beginning
with amplitudes APy = 7 we observe zones of plastic deformations.
For the amplitude of the external force Fy = 12.5 zones of plas-
tic deformations begin contacting with each other. and the beam
exhibits the continuous strip of plasticity. One may say that about
of 50% of the beam length is passed to the plastic zone. The beam
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Fig. 835 Cross-sections of the beam deflection for various amplitudes of the
external load.

cross-section can be treated in the figure symbolically, since a ratio of
the linear beam dimension and its thickness equals 100. In the prob-
lems of simply supported beam the only one plastic zone is located
in a neighborhood of the beam center.

The increase in the external load amplitude implies the increase
in this zone and for Py = 20 the beam fully transits into the plastic
zone.

In Fig. 8.36 the vibration chart for the boundary conditions (8.48)
and the physical piece-wise linear characteristic is presented. In the
npper chart a plasticity order in the form of color intensity of the
beam is shown. White color corresponds to plastic deformations, and
the chart of vibrations in these zones repeats in full the chart of the
problem devoted to only geometric nonlinearities (Fig. 8.28). A chart
of the plasticity order gives a possibility of estimating visually the
influence of a physical nonlinearity. Plasticity zones play an impor-
tant role and the given chart can be considered together with the
cross-section of the beam deflections shown in Fig. 8.35. As it has
been seen from the upper chart, for Py = 20 the beam practically is



420 Determimstic Chaos in One-Dimenstonal Continuous Systems

[ ERE- Wl L I ] 8}

(b)

Iig. 8.36  Chart of vibrations (a) and chart of plasticity order (b).
transited in full to a plastic zone on all frequencies and vibrations
for large loading amplitudes are not predicted by the applied theory-

(=]

8.1.7 On the Sharkovsky’s periodicity

Investigation of chaotic regimes in models with a 3D phase space

epan with investigation of the Lorenz system, : /adays
heg tl tigation of the Lorenz system, and nowaday
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includes numerous mathematical models. They include objects from
hydro- and aerodynamics, radio-physics, mechanics, chemistry, biol-
ogy. economy. In addition, each branch of the mentioned sciences gen-
erates its own peculiar mathematical model being not coupled with
the so far known and investigated ones. Occurrence of novel models
exhibits the rich behavior of nonlinear dynamics which require clas-
sification of the detected phenomena. In fact, the rules of changes of
dynamical regimes regarding local changes of the parameters can be
reduced to a few typical bifurcations. If we consider a route to chaos,
then the problem is reduced to a few typical scenarios of transitions
or a combination of these transitions. On the other hand. global
bifurcational structures of the dynamic regimes, even for the same
mechanical system, but for different boundary conditions, may dif-
fer completely from each other. In other words, analyzing the bifur-
cation diagrams require a study of the particular mosaic elements
which describe local scenarios of the transitions between different of
regimes.

From the mathematical point of view, local scenarios of tran-
sition into chaos correspond to the local bifurcations or sets of
such bifurcations. Then, a complex mathematical object is created,
composed of hyperbolic non-trivial sets, as well as stable periodic
motions. The mentioned sets are called quasi-periodic. In the above
we gave an example of transition of the mechanical system into
chaotic state via the Feigenbaum scenario, and we have estimated
the muniversal Feigenbaum constants for the boundary conditions
(8.48)—(8.51).

We consider a scenario of transition of the mechanical system
into a chaotic state for the boundary conditions (8.49)-(8.52). We
have detected not only period doubling and period tripling bifur-
cations, but also period quintuple, period septuple, period ninefold
bifurcation phenomena. The given results are shown in Figs. 8.37
and R8.38 while partitioning of the space into parts n = 16 and
n = 32, respectively. In these figures time histories w(t), phase por-
traits w(w), power spectrum, Poincaré maps weyr(wg), where T is
a period of excitation (amplitudes of the exciting force are shown in
the figures) are presented. In Fig. 8.37(a) in the power spectrum one
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Fig. 8.37 Following Sharkovsky’s periodicity: time histories, phase portraits, fre-
quency power spectra and Poincaré maps for different Po: 6.871 (a), 6.904 (b),
6.909 (c), 6.917 (d) (n = 16).

period doubling bifurcation is clearly visible, after which the period
fivefold bifurcation takes place.

In Fig. 8.37(b) in the power spectrum two period doubling bifur-
cations are shown (denoted by 1 and 2, respectively), and then the
period tripling bifurcation occurs. Figure 8.37(c) shows one period
doubling bifurcation with the following sevenfold bifurcation. Finally,
in Fig. 8.37(d) after a period doubling bifurcation, the period nine-
fold bifurcation appears. In the latter case, in the Poincaré section,
two areas of the gathered points have been transited into one area.
We consider an analogous chart for the partition n = 32 (Fig. 8.38).
Results have been presented for only one excitation frequency w = 5-
Here, after first period doubling bifurcation (it is denoted by 1 in the
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Fig. 8.38 Following Sharkovsky’s periodicity: time histories, phase portraits, fre-

quency power spectra and Poincaré maps for different Py: 6.850 (a), 6.857 (b),
6.877 (c), 6.889 (d) (n = 32).

figures), we have period fivefold and period sevenfold bifurcations
[Fig. 8.38(d)] as well as a partition of the spectrum into 11 equal
parts is observed [Fig. 8.38(c)].

The novel phenomenon, when the spectrum is divided not into
either 2 or 3 parts, but also for more parts with creation of a strange
attractor (SA), has been reported. This phenomenon is presented
in the Poincaré map in the form showing collapsing of two local
spaces. The interval of the parameter variation (with a step of 0.001)
has been studied. The following characteristic features have been
monitored. During transition from periodic vibrations to chaotic
ones, a series of bifurcations appear which has more complicated
scenario than that exhibited by occurrence of the amplitude peak
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associated with the frequency 5. This space is relatively wide. Fur-
ther, a sudden transition into chaos occurs, and then a transitional
zone into another regime appears. The series of bifurcations occurs
before the system transits into chaos, which are of particular interest.
The bifurcation interval consists of the series of short zones, and in
each of them the further spectrum partition takes place into rather
large number of parts. The common phenomenon for all zones is that
of existence of the first period doubling bifurcation. The most dom-
inating zones are: spectrum parts from 0 to 5 and from § to w are
divided into 5 equal parts; spectrum parts from 0 to § and from §
to w are divided into 11 equal parts: spectrum parts from 0 to % and
from % to w are divided into 7 equal parts.

In the transitional zones the spectra have non-chaotic structure,
but they exhibit peaks, which are not exactly rational with respect to
the fundamental frequency. The most dominating characteristic zone
is that 5 and 11 located between bifurcations the spectra of this zone
have two peaks associated with {5 and %. i.e. peaks corresponding
to the fivefold bifurcations, but the peaks associated with % and ?—‘[‘,’-
are substituted by pairs of the equally distant peaks [Fig. 8.38(b)].

It should be emphasized that nowadays simple models of chaotic
dynamics, i.e. discrete dynamical systems are relatively well studied.
For such systems a series of the theorems have been formulated, in
particular, the window of period three, which corresponds to the
most interesting part of the 1D map f(z) = 2 4+ ¢. The following
question occurs: Do other non-periodic orbits exist? The answer is
given by the Sharkovsky theorem [Sharkovsky (1964)]:

Let J be the finite or infinite interval in R. We assume that the
map is continuous. If there is a point of period n, then there exist a
point of period k, k& > n belonging to the following series

3,5, 7,09, ...
sog Py 20, 2R T
Sharkovsky’s theorem is applied only to the real function given
in the real interval. Ten years after the work [Sharkovsky (1964)]

another work has been published [Li and Yorke (1975)] for the par-
ticular case of the orbit with period-3.
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One of the important achievements of this work refering to flexi-
ble beams is detection and illustration of the bifurcations sequence,
which follows the Sharkovsky’s rule of order.

8.1.8 Chaos — hyperchaos—hyper—hyperchaos
phase transitions

We consider the evolution of the vibration regime while increasing
the amplitude of the exciting force Py after occurrence of a strange
chaotic attractor (SA). Evolution of the strange chaotic attractor
with the increase in the parameter P, inside of a chaotic space
and its associated qualitative changes are not fully investigated for
mechanical systems. A general tendency of stochasticity development
of chaotic set and the increase in the attractor dimension are known.
A full description of chaotic dynamics governed by a system of dif-
ferential equations is bounded by their number. Qualitative changes
in structure of chaos exhibited by mechanical systems is not inves-
tigated in full. Analysis of the transition “chaos-chaos” does not
include bifurcations in chaos associated with the increase in the LD
of the analyzed attractor. Intuitively, an occurrence of the qualita-
tive changes of the physical characteristics of an attractor due to
occurrence of the positive LE is more realistic way of study than
a change induced by the LD successive integer. In fact, in the case
of occurrence of additional positive LE, a new unstable direction
on the system trajectory appears, which should either change the
system dynamics or its physical characteristics. On the other hand,
Lyapunov’s dimension of the local volume preserves its quantity, i.e.
it is neither compressed nor extended. Note that the LD includes
not only positive and zero value but also negative exponents. The
latter ones are responsible for stability of various types of motion.
They represent the metric properties of an attractor. In the reference
[Li and Yorke (1975)] it has been shown that negative LEs are not
associated with any physical characteristics of the dynamic regimes,
and in general they cannot be estimated via physical experiment.
We consider a transition from a SA with one positive LE to
chaos with two and three LEs, which will be called as chaos—
hyperchaos and “hyperchaos-hyper-hyperchaos” transition. Moving
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Fig. 8.39  Maximum beam deflection, power spectrum of LEs, and the vibrations
scale (mixed boundary conditions).

in the hyperchaos space along the parameter F) two scenarios are
possible: a soft transition of “chaos-hyperchaos”, when a smooth
increase in the second LE does not imply any jump-type qualitative
changes of the chaotic process. On the other hand a stiff transition
“chaos-hyperchaos” is associated with the so far mentioned jump-
type changes. It is interesting to investigate mutual dependence of
the various vibration characteristics. In Fig. 8.39 the whole spectrum
of parameters is presented including: wmax(FPy) — maximum deflec-
tion of the beam center, LEs spectrum {x,—(P())}}r’= , and a scale, char-
acterizing the vibrations character. Analyzing simultaneously curves
Wmax(Po) and { xi(Po)};-Ll their mutual correspondence is observed.
A change of sign of the maximum LE is associated with a series of stiff
bifurcations exhibited by the curve wy,ax (£) and the associated color
change of the attached scales. Vibrations are damped up to Py = 3.3.
It is well seen on the deflection curve wyax(Fp). All LEs are negative,
since the vibrations are stable, and they are approximately equal to
—5. While approaching the amplitude load value Fy = 3.3, the max-
imum LE x;(P,) begins to increase and it tends to 0. It means that
the system is on a border between two regimes, and a small increase
in the external amplitude of the load yields periodic vibrations. The
system exhibits a first stiff bifurcation, and the maximum LE is equal
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Fig. 8.40 Spectrum of the LEs in the case of clamping.

—5 again. Further, an increase in the amplitude P of the external
load implies occurrence of a zone of periodic vibrations [3.3;6.9]. On
this interval the maximum deflection wy,ax(FPy) smoothly increases,
and the maximum LE oscillates in a zone of negative values. The lat-
ter zone is finished by a series of bifurcations, and then a transition
into chaos takes place. Series of bifurcations are visible on the max-
imum LE xi(FP). Beginning of a new bifurcation is associated with
the increase in y1(FPp) up to 0. Sudden jump on both dependence
X1(F) and wyay(Fy) indicates the first transition of the system into
a chaotic state. Positive values x1(Pp) in interval [6.9;7.2] imply the
system instability. This interval is presented in the scale. The next
interval Py € [17.2; 29.2] begins with a stiff stability loss, which is
well indicated on the curves wyax(Po) and x;(Py). Two largest LEs
are positive, whereas the remaining LEs are negative, and the sys-
tem exhibits hyperchaos. Finally, the hyper-hyperchaos regime takes
place for Py € [42.5; 50]. Beginning of this zone is associated with
a zone of a stiff stability loss. The system transits via a series of
stiff bifurcations into a hyper-hyperchaos (x; > 0, x2 > 0, x3 > 0,
X4 increases, remaining negative, whereas s oscillates around the
value of —2)



428 Deterministic Chaos in One-Dimensional Continuous Systems

Comparison of all characteristics taken into account so far yields
an observation, that the results obtained via analysis of the vibra-
tion spectrum corresponds in full to the results obtained via the LEs
spectrum. This correspondence has been observed on the whole con-
sidered interval. We emphasize once more peculiarities and mutual
relations of the considered parameters in the characteristic system

points:

(i) In zones with stable vibrations (damped and periodic) the
maximum LE y;(Fy) is positive, and the maximum deflection
Wiax (FPy) changes smoothly without jumps.

(ii) In bifurcation zones (denoted on a scale by black color) the
maximum LE y;(P) tends to zero value, but does not achieve
a positive quantity.

(iii) The change of regime is associated with a jump effect (x;(Fp)
and wyax(FPo)). Points of the system reconstruction are well vis-
ible on the vibrations scale.

(iv) In zones with chaotic vibrations the maximum LE Yi(Po) is
positive, and the maximum deflection wyay(Fy) increases via
small jumps.

(v) High correspondence between the results obtained via FET
(scale) and graphs of the maximum LE x;(F) is evident. Peri-

odic vibrations and damped vibrations correspond to negative

\i(Py), whereas chaotic zones are associated with positive LE.

It should be emphasized that the so far described phase tran-

sitions “chaos-hyperchaos-hyper-hyperchaos” have been observed
only in the case of the applied non-symmetric boundary conditions
[Krysko et al. (2006)]. In Fig. 8.41 dependences x;(Fp) are presented
for the boundary conditions of clamping type. Here a transition from
the state of bifurcation into chaotic state takes place, and from the
whole LEs only x; changes its sign. In the chaotic regime only X1
and Y increase, whereas the remaining LE oscillate around -5

On the borders of transition from regime of bifurcations into chaos

and wvice versa all LEs oscillate. In dissipative systems with chaotic
dynamics versus the control parameters and initial conditions, an
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Fig. 841  Time histories, phase portraits, power spectra and Poincaré showing
the following regimes: (a) periodic vibrations, (b) chaos, (¢) chaos-hyperchaos,
(d) hyper-hyperchaos.

mfinite set of attractors are realized with different structures. Fix-
ation of one of the control parameters does not change the picture:
there is an infinite set of attractors and their pools of attraction are
divided in the phase space by separatrix surfaces. Since in the phase
space there exists a set of regular periodic regimes together with the
SA, a theoretical description of the dynamics of dissipative systems
is difficult.

Numerical results show that attracting pools and existence of peri-
odic regimes in the phase space with respect to parameters decrease
with the increase in their periods. It is because the cycles of large
periods are not registered due to fluctnations, and an attractor does
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not include periodic trajectories and becomes almost hyperbolic one.
The latter attractors are called quasi-attractors, whereas the sys-
tems are called quasi-hyperbolic systems. It seems that a lack of
sufficient number of rigorous results of the stochastic and ergodic
theories of the quasi-attractors should be supplemented with numer-
ical and physical experiments. In Fig. 8.41 the following dependen-
cies are shown: time histories w(t) (180 < t < 200), phase portraits,
power spectra and Poincaré sections for the following values of the
amplitude of external load:

(i) Py =5 — periodic vibrations, the first LE x; > 0;

(ii) Py = 7 — chaotic vibrations, the first LE x; > 0, whereas the
remaining are negative (xo < 0);

(i) Py = 27 — chaos-hyperchaos; the first and the second LE is
positive (x1 > 0, x2 > 0), and the remaining ones are negative
(x3 < 0);

(iv) Py = 47 — chaos-hyperchaos—-hyper-hyperchaos; first, second
and third LEs are positive (x3 > 0, x2 > 0, x3 > 0); the
remaining one is negative (x4 < 0).

Analysis of the mentioned characteristics implies that periodic
vibrations are characterized via the Poincaré map by a point, whereas
the Poincaré cross sections for Py = 7 shows two independent
attractors localized in different pools of the phase space without any
intersection. These attractors are robust since they preserve their
structure and statistical properties for small changes of the control
parameters. The associated power spectrum has a broadband basis
with two extrema on the excitation frequency and first subharmonic.
The Poincaré map exhibits a symmetry regarding a diagonal, and
the points are concentrated in two fundamental groups. Transition
of the system into chaos-hyperchaos state yields a birth of the uni-
fied SA composed of both previous chaotic regimes. Independently
of the initial condition choice, the unified attractor attracts trajec-
tories of beginning in initial points, which means that the separa-
trix plane does not exist more. In other words, creation of unified
attractor implies unification of the attraction pools of both previ-
ously separated attractors. In the Poincaré map “splashes” appear,
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which means that either a new stochastic set has been born or a
development of a new stochastic set in directions previously being
compressed. In the power spectrum, we also observe a broadband
base, but exhibiting only one extremum associated with the excita-
tion frequency. Movement along the parameter Py up to Py = 47
pushes the system into chaos—hyperchaos—hyper-hyperchaos state.
Here more dense unification of the SA is presented, and on the power
spectrum there is a lack of clearly manifested local extrema. The
power spectrum corresponds to the white noise and has no local
extrema. Detailed investigation of the time histories w(t) as well as
other characteristics shows, that the system stays regularly on two
attractors for Py = 7. Transition of the system into chaos—hyperchaos
state (Py = 27) is realized via splashes of the positive deflections, i.e.
the system exhibits the following dynamical state: stiff stability loss
for negative deflections, vibrations around the equilibrium configura-
tion and stiff stability loss for positive deflections. While the system
transiting into chaos-hyperchaos state (P, = 47), vibrations are fully
chaotic, i.e. the “turbulent” phenomena are observed, and there is
a lack of laminar splashes. Besides of the so far mentioned charac-
teristics, each regime can be analysed using the AF (see Fig. 8.42).
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Fig. 8.42 Autocorrelation function (AF) for various dynamic regimes,



432 Deterministic Chaos in One-Dimensional Continuous Systems

In the case of periodic regime the AF is periodic, whereas for chaotic
regime the AF is fastly damped and tends to zero.

Sets of finite and non-finite dimensions having chaotic dynamics
include systems with 1.5 DOFs on one end, and partial differen-
tial equation of the Navier-Stokes type on the other end [Landford
(1982)]. In between both ends there are dynamical systems with
increasing number of DOFs, including also the von Karmén equations
considered in this book. Investigation of the mentioned dynamical
systems should yield an answer to the following fundamental prob-
lem: Does any border exist in the system chaotic dynamics. where
on one side the system dynamics can be called chaotic, whereas from
the other side we deal with a real turbulent dynamics?

Observe that in the considered paradigm, the real turbulence does
not mean any hydrodynamic phenomenon, but rather a common pic-
ture of the typical behavior of continuous systems [Landford (1982)].

8.1.9 Reliability of chaotic zones

One of the important problems regarding existence of either hyper-
chaotic or hyper-hyperchaotic deals with their verification. We
should be sure that the discovered nonlinear effects are not yielded
by peculiarity of the difference scheme or by error of the introduced
method of computation of the LEs. For the problem of mixed bound-
ary conditions, the following numerical methods have been used:

(i) Explicit method with different partitions of n, with differ-
ent computational steps dt, and with approximation of spatial
derivatives of orders O(h2), O(h*), O(hY), as well as the Runge—
Kutta methods RK2, RK4, RK9 have been applied.

(ii) Implicit method with different partition n regarding space, time
steps dt, and with approximation of spatial derivatives of orders
O(h?), O(h*), O(hY).

(iii) Pseudo-spectral method with different partitions n, with differ-
ent time step df, and the Runge-Kutta methods RK2, RK4,
RK9 have been used.

Algorithm of estimation of the LE spectrum is applicable to the
applied method being based on solutions to differential equations,
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and it assumes integration of additional vactors along a phase curve.
Therefore, in order to verify the explicit method we have chosen a
pseudo-spectral method. Further comparison of the results obtained
by these methods for different partitions regarding space and time
has been carried out. All results have been obtained via RK2 method
with approximation of the space derivatives with accuracy of O(h').
The choice of these parameters has been illustrated and discussed
earlier, and it seems that we achieved a compromise between the
speed and accuracy of the computations. In Fig. 8.43 spectra of LEs
have been presented, obtained via explicit and pseudo-spectral meth-
ods for different partitions regarding spatial and timing steps. In the
figures there are given also scales, obtained via the same numer-
ical method as that used for computation of LEs spectra. Explicit
method yielded results A-D, whereas the pseudo-spectral yielded the
resulated denoted by E, F, G. Parameters of computations follow:

A — explicit method; spatial partition n = 8, time step dt = 2%,
derivatives approximation O(h?').

B — explicit method; spatial partition n = 16, time step dt = 275,
derivatives approximation O(h?).

" — explicit method; spatial partition n = 16, time step df = 277,
derivatives approximation O(h?).

D — explicit method; spatial partition n = 32, time step dt = 2711,
derivatives approximation O(h?).

E — pseudo-spectral method; spatial partition n = 8, time step

dt =278,

F — pseudo-spectral method; spatial partition n = 32, time step
dt =21,

G' — pseudo-spectral method; spatial partition n = 16, time step
di = 2712,

Qualitative correspondence of the results obtained via various
methods approves reliability of existence of hyper-hyperchaotic zones
and allows to conclude that the observed phenomenon characterizes
the dynamical system properly and does not depend on the applied
difference scheme. One more important observation follows: max-
imum deflection curve wy,ax(Po) yields information regarding the
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vibration character. This characteristic does not need any additional
algorithms and it can be obtained in a rather simple manner. Simplic-
ity in construction of a given characteristics allows to apply it from
the beginning of the carried out analysis. More detailed picture can
be obtained by adding additional “scale” characteristic constructed
on the basis of FFT and LE spectrum.

We have also compared a chart of vibrations with a chart
of chaotic, hyper—chaotic and hyper-hyperchaotic zones, based on
the LE spectrum (see Fig. 8.44). Observation of the charts yields

ey

‘ s ¢

Fig. 844 Charts of vibrations: chaotic, hyperchaotic and hyper-hyperchaotic

Z0nes.,
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the following conclusion. Chaotic zone is the widest and zones of
hyper-chaos and hyper-hyperchaos are located in it. The hyper—
hyperchaos phenomenon occurs for large amplitudes of the exter-
nal force for high excitation frequencies. Comparison of both charts
allows to validate the carried out analysis of the basis of FFT, since
zones with chaos correspond to zones with positive LE. It is obvious
that charts coincide with each other. The first chart brings the addi-
tional information on the periodic vibrations, and it allows to divide
zones with separate harmonic and subharmonic 3 zones. Chart of the
LE yields more detailed picture of chaotic zones putting emphasis on
the chaotization strength that they are the parameters (Fy, w). Coin-
cidence of the borders of the fundamental zones allows to conclude
that the analysis carried out on a basis of FFT yields the results being
in agreement with other methods, and can be applied to estimate the
general chart of the system dynamics.

8.1.10 Conclusions

This part yields results of the numerical computation of the vibra-
tions of infinitely long flexible panels subjected to the external para-
metric load. At first, the problem of the reliability of the numerical
results has been addressed. For the problem of simply supported
beam we have applied the BGM in higher approximations for two
physical processes — free vibrations and buckling phenomenon. Coin-
cidence of the experimental and analytical results implies the results
reliability. For the BGM it is required to estimate a number of the
series terms to get the reliable results. The experience has shown that
we may achieve only the integral convergence. Therefore, the whole
further analysis is carried out on a basis of the vibrations power spec-
trum associated with the beam center. Owing to the so far described
approach a methodology of the charts construction has been devel-
oped. Note that for the problem regarding the parametric transversal
load the practical convergence of the BGM is achieved already for
two terms of the series. The beam parametric vibrations have served
as an example to study the charts of vibrations, the fundamental
vibration regimes, and to investigate a transition into chaos and the
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system evolution within a chaotic dynamics. We have detected a
transition into chaos through the Feigenbaum scenario, and we have
traced eight period doubling bifurcations. In the chaotic zone we have
distinguished Smale, Shilnikov and Rdssler attractors.

The BGM has been used to control the validity and reliability
of the pseudo-spectral method on Chebyshev's mesh. In particu-
lar, the problems regarding convergence for the different approxima-
tions, spatial partitions, and time steps have been addressed. Results
yielded by all methods have been compared with each other on a
basis of the integral 3D charts. Good correspondence of all results
obtained through the applied methods has been presented. Particu-
lar attention has been paid to the problem of integral convergence of
the difference scheme with respect to the approximation order of the
difference derivatives, i.e. O(h?), O(h*) and O(h®). Optimality of the
approximation O(h?*) to solve PDEs governing problems in mechan-
ics has been demonstrated. The problem of a usage of explicit versus
implicit schemes has been outlined.

FDM has been used to solve problems with the beam clamping. As
in the case of the beam simple support, the period doubling route to
chaos has been illustrated, and the system dynamical peculiarities in
a chaotic regime has been investigated. A period tripling bifurcation
has been also demonstrated.

Besides the problem of parametric vibrations of the flexible panels
of infinite length with the geometric nonlinearity, we have included
into considerations also the physical material nonlinearity. We have
considered two variants of the stress-strain relation, i.e. in the form
of two piece-wise linear characteristic and in the form of the expo-
nential transition into a plastic zone. For both variants the vibra-
tion charts for the problem of clamped beam have been constructed.
In the case of the simply supported beam wider spectrum of the
characteristics has been applied: maximum deflection, maximum LEs
and scales. While solving the problems with physical nonlinearities,
we have added a novel parameter — plastic zone.

Owing to analysis of the plastic zone, a notion of plasticity global
order of the beam has been introduced. Namely, we have investigated
beam vibrations up to its transitions into a plastic zone,
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In this chapter part novel results of theory of nonlinear mechani-
cal systems have been presented. At first, a route to chaos due to
Sharkovsky’s smooth scenario has been illustrated and discussed.
On the contrary to the Feigenbaum scenario, our dynamical system
transits into chaos via a cascade of the period doubling bifurcation,
and via the sequence governed by Sharkovsky's order. Earlier the
similar transitions have been discovered only for discrete maps, and
hence the reported result is novel from a point of view of nonlinear
dynamics. For the case with non-symmetric boundary conditions,
we have detected the unique phenomenon not exhibited by other
nonlinear dynamical systems. Namely, three LEs have got posi-
tive values (hyper-hyperchaos). Each of the regimes have been ana-
lyzed using the fundamental characteristics. Simultaneous analysis
of LE, maximum deflection, vibrations of the beam center, phase
portraits, power spectra, Poincaré maps and the AF imply the
increase in the chaotization process corresponding to the increase
in a number of positive LE. We have paid attention to the reli-
ability of the obtained results. Comparison of the results of the
explicit method, with different space partition as well as the pseudo-
spectral method on a Chebyshev's mesh approves that the chaos—
hyperchaos phenomenon is the real property of our studied system,
and not the error introduced by the applied numerical method.
The simultaneous analysis of the charts of vibrations and charts
of chaotic, hyperchaotic and hyper-hyperchaotic zones has been
carried out.

Numerical experiments showed a larger efficiency of the applied
numerical methods and the used algorithms. The obtained results
are new from a point of view of nonlinear mechanics and they await
experimental approvement.

8.2 Cylindrical Panels of Infinite Length

8.2.1 Problem formulation

We consider elastic isotropic shells of infinite length, i.e. a shell mate-
rial satisfies the Hooke’s law. In addition, we take into account the
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geometric nonlinearity, i.e. the relation between deformations of mid-
dle surface and displacements has the following form

ou 1/0w\?
Ep=——kow+ = =— ). 8.149
R ki 2 <61:) ( )

Full deformations of an arbitrary point €3 is a sum of deformations
in middle surface &, and bending deformation (¢ = £, 4, ), which
owing to the Kirchhoff-Love hypothesis, is as follows
0w
Oz2"

Let us consider a process of shell motion in time interval £y and ¢;.
We compare different trajectories of system points between the initial
to and final ¢, positions. Real trajectories are defined by the following
relation

(8.150)

Exu= —2

Ly
/ (0K — 611+ §'W)dt = 0. (8.151)
to
Here K stands for the system kinetic energy, II is the potential,
whereas 0'W is the sum of elementary works of the external forces.
In the case when all forces acting on the system have a potential,
Eq. (8.151) takes the form
t
S =4 (K —II)dt = 0, (8.152)
to
where § = 'tf)‘ (K —1II)ot is the Hamilton action. After standard
transformations, the non-dimensional counterpart form of equations
regarding displacements follows
azlu_ka_w+@82_w+ _@—0
022 "or orox2 P o T
i 8"w+ ow (Pu , dw  Owdw
12 9z O
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The following relation between dimensional and non-dimensional
quantities holds

- a 1 E 4 E - h
k;t=_—7 Pz = l_yzf\dp:rv q= 1_U2A4QV ’\='C_L'v

1—v2)y.
(E,—Vht, u=1u), z=.az,
g

t=a

where parameters with bars correspond to non-dimensional quanti-
ties. In Eq. (8.153) the bars are already omitted. In relations (8.154)
the following notation is applied: E is the elasticity modulus, v is the
Poisson’s coefficient, v is the material density, ¢ is the Earth accel-
eration, g is the transversal load (function of z and t), h and a are
thickness and linear shell dimension, respectively, w and u stand for
deflection and displacement of the middle surface, respectively, and
k; = RL, is the shell curvature.

System of PDEs (8.153) should be supplemented by boundary
and initial conditions.

Boundary conditions are as follows:

1. Pinned support

0w
=0 s 0, fora=0;1. (8.155)
2. Fixed support
u=w= o =0, forz=0;1. (8.156)
Ox
3. Pinned-fixed (mixed) support
592
forz =0 u.=-w=((,))—_1:=0.
N (8.157)
forz =1 u—'w—?ﬂ—ﬂ
i I

Initial conditions for ¢t = 0 follow:

u=fi(z), w=fo(z), w=fs(z), = fi(z). (8.158)
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8.2.2 Solution and its reliability

We approximate the partial derivatives regarding x in system (8.153)
by difference relations with the error of O(h{) using the Taylor series
in vicinity of the point z; of order hy, where h, is the partition step
of z € [0,1]:

1
Gpy, = {0 L@ < 1,3 =ihi0 =046 00y Nyhy = N} (8.159)

In this case PDEs (8.153) are reduced to second-order ODEs with
respect to time for an ith point of the interval [0, 1]:

i = Mgz (i) — Ap(w;i) (ke — Ag2(wi)) + p(ily, t),
Wi + ew; = A2 (—11—2/\_,,4 (w,-) RS Ax(wi)(Arz (wi)
— Ag(uwi) (ks — Amz(wi))) + (Agaawn) + ko) (Aot
— kgw; + 0.5(Az (w;))?) + q(ihy, t). (8.160)

The following difference operators are introduced:

(i +8()ip1 =8 )iy + (ica _ (0() 4
Aaf), = =it it o - (532) +ou.
Hafy = —()iy2 +16()ipq —30(); +16(-);y — ()i
L 12h3
2(.
- (52) +oud
—(Jips + 12(-)ipa — 39(:)iyq +56(:); — 39();_,
2y — (s
Ag,-4(')z . * ( )1_2 ( )l_.(;h'll
4(.
_ (%:154)).- +O(hd). (8.161)



442 Determamistic Chaos in One-Dimensional Continvous Systems

The difference forms of the boundary and initial conditions follow

I. Pinned support

w; =w; = A2(w;) =0, i=0;N. (8.162)

2. Fixed support

ug=mwy = Nz(wy) =0, i=0,...,N. (8.163)

3. Mixed support (8.157) is a combination of boundary conditions

(8.162) and (8.163). Initial conditions have the form
wi =w; = Ag2(w;) =0,i =0; N(xz =0), ,
= Aa(w) = 0,i = 0 N(@ = 0) 108

ui =w; = Ay(w;) =0,i=0; N(z = 1),

wi = fi(ihy), i = folihy),w; = f3(ihy),w; = fa(ihy). (8.165)

System of second-order ODEs (8.160) is then transformed to a sys-
tem of first-order ODEs, and then it is solved with the RK4 method.
Numerical convergence of the method with respect to the space coor-
dinate x and time ¢ has been investigated. In Table 8.6 a time history
w (0.5:1), phase portrait w (w) and power spectrum S (w) for differ-
ent partitions of spatial coordinate x and with respect to time ¢ and
action of harmonic transversal load ¢ (a,t) = qo sinwyt, qo = 500,
wy = 0.46 (k, = 48, € = 0.1) are reported.

Analysis of the given results shows that in order to get practi-
cally the exact solution it is sufficient to use interval [0,1] parti-
tion with N = 16. Applyving the Runge principle and observing the

Table 8.6 Time histories, phase portraits and power spectra for different N
(periodic vibrations).

N w(0.5:1) | W) I Power spectrum S(@)
r—] T —_—————————
nI N ( | "

. N | .
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Table 87 Time histories, phase portraits and power spectra for different N
(chaotic vibrations).
N w(0.5:1) [ wiw) l Power spectrum

AT

L

-

04

results given in Table 8.6, one may conclude that taking different
N = 32;64: 128 does not introduce any changes to the time histories
w(0.5.1). phase portraits w(w) and power spectra S (w).

A similar investigation is carried out when the system exhibits a
chaotic regime. In Table 8.7 the same characteristics as in Table 8.6
for go = 3.500 and w,, = 0.46 are presented.

[t is clear that though the signals for different partitions do not
coincide, their integral characteristics, phase portraits and power
spectra practically coincide. Therefore, the further numerical com-
putations have been carried out for N = 32.

8.2.3 LEs

In order to detect particularities of the cylindrical panel vibrations
we construct the charts on control parameters {gg.w,} plane (Figs.
8.45 and 8.46). The method of charts construction has been based on
the power spectrum analysis and the largest LE. Figure 8.45 reports
the chart in full, whereas in Fig. 846 only its part marked as A
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Fig. 8.45 Charts of panel vibrations.

is shown. In order to construct the chart shown in Fig. 8.45 the
plane of {qy.w,} parameters have been divided by a mesh of steps
{4,0.00115}.

Application of the LE computation plays an important role in the-
ory of Hamilton and dissipative dynamical systems, since they allow
to measure stochasticity magnitude. In addition, there exist a depen-
dence of LE on other dynamical characteristics like the Kolmogorov
entropy or a fractal dimension.

It should be emphasized that LEs characterize the averaged veloc-
ity of the exponential divergence of the neighborhood trajectories (see
[Wolf et al. (1985)]). We follow here the method developed by Benet-
tin et al. [Benettin et al. (1976, 1980)]. We transform Eq. (8.161) to
its normal counterpart form:

du; dw;

W:{/l' —(F:”,.
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Fig. 8.46 Charts of panel vibrations (window A).
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(8.166)

For the given problem the method of finding all 4(N —1) LE relies

on the following approach. We take orthonormal system of 4(N — 1)
vectors of dimension 4(N — 1):

{l';',ll{’:l” — l.(l':l.t'(’l) =‘$i‘[-i‘-j = 1 ..... ‘l(;’\‘r — I)} ((\,.I(i?)
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For simplicity, we take the following vectors:

(1,0,...),(0,1,0,...),(0,0,1,...),...,(0,0,0,...,1).  (8.168)

Along a trajectory of the system motion we compute a differen-
tial of the map with a sufficient step, given by Eq. (8.167), regard-
ing each of vectors (8.168). Then, the obtained vectors {vf,i =
1,...,4(N — 1)} are normalized via the Gramm-Schmidt procedure

4 i—1
: E . D i
b= ot k=5 o = ot - T abrt]
1 =
= (8.169)
=k ok ok uk
Vi = y U )US
Uf: 1 ] lk(J 1) ,7',=2,,__,4(N_1).

@;

Finally, LEs are defined by the following formula

A= ILIECH Zlna’ (8.170)

In what follows we investigate a problem of dynamical stability
loss of the shell subjected to harmonic load and uniformly distributed
along the shell surface, whose natural frequency is wy = 0.46.

In Fig. 8.47 the dependence wyax(qo) for the shell center (z =
0.5) — point A and for (z = 0.75) — point B are shown. In addi-
tion, two characteristics A1 (go) for the shell center (z = 0.5) — point
A are reported. Besides, in Fig. 8.47, in window FE, there is the vibra-
tion scale part versus go and \;(qo), (¢ = 1,2, 3) regarding the interval
4,000 < gg < 5,000. In the scale showing the vibration type versus
qo zones a, b, c,d, e, f are distinguished, which should be analyzed in
a more detailed manner (we deal with so-called peculiar zones). In
the interval 0 < gy < 1,247.3223 the shell exhibits periodic vibra-
tions with wg and wy/2, transiting into a zone of bifurcations. Period
doubling bifurcations have been monitored up to qo = 1,247.3223
(see Table 8.8). Increasing go up to 5-107° the mechanical system is
transited into chaos owing to the Ruelle-Takens-Newhouse scenario
on the two frequencies for gy = 1,247.32235 (see point A). Owing
to the Ruelle-Takens-Newhouse theorem, chaos appears after two
Hopf bifurcations, and then a SA exhibiting a complex topology and
bounded by non-smooth manifolds occurs.
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Fig. 847 Dependence wmax(qo) and Ai(go).7 = 1.2.3.

In zone a, the first-order discontinuity in A (go) is observed,
and Ay > 0, Ao < 0, A3 < 0. However, a sudden increase in
beam deflections is not observed. Further increase in gy pushes the
system into a deep chaos for gy = 1,256 — signal w (t) exhibits
chaotic character, power spectrum has a broadband base, whereas
the phase portrait presents a black spot. The change of ¢y on the
increment of 0.615 (g = 1,256.615) pushes the shell vibrations
into an ordered deterministic chaos, which is built via thirteen-fold
period doubling bifurcation (A; > 0). The change of gy on 51073
(qo = 1,256.62) yields more ordered vibrations exhibited by the sig-
nal, phase portrait and power spectrum. A particular feature of the
system exhibited by a narrow window of bifurcations of the men-
tioned type (A; (qo) <0, (i = 1,2, 3)) is reported. Further increase in
¢o on the amount of 0.4 causes the occurrence of the Hopf bifurcation
(g0 = 1,260, A; (qo) < 0,i = 1,2,3), and hence the Sharkovsky order
of 2-13 takes place. SA illustrated by Poincaré map begin to increase,
and their number increase too. For ¢y = 1,260.5 (i.e. increasing gy
an amount of 0.5), the shell transits again into the chaotic regime on
the frequencies of the last Hopf bifurcation, i.e. Sharkovsky’s order of
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Table 8.8  Time histories, phase portraits. Poincaré maps and frequency power
spectra of the shell centre (zones a, b) for different go.
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2-13 is exhibited. Step by step the chaos is transited into deep chaos.
which is manifested by signal w (¢), dark spot in the phase portrait
as well analogous picture of the power spectrum as it happened for
qo = 1,256 (Ay > 0, Ao < 0, A3 < 0). The so far given descrip-
tion is related to zone b (see Table 8.7). Maximum shell deflection
in zones a and b is practically the same, i.e. no sudden increase in
shell deflection is observed in comparison to that regarding the static
stability loss. The value ¢j, = 1,256 estimates the occurrence of the
first dynamical critical load.

8.2.4 Chaos—hyperchaos transition

We investigate the evolution of the vibrational regime of the shell
increasing amplitude ¢y of the harmonic load. It should be mentioned
that the problem of chaotic attractor evolution with the increase in
the parameter gq is rather rarely investigated.

Our investigations allowed to discover rich nonlinear dynamical
features of the investigated shell, including that the smoothing of
the power spectrum is bounded due to the system characteristics,
in particular, due to a number of governing differential equations,
the attractor dimension computation, as well as synchronization pro-
cesses. It is known that qualitative changes in a chaotic structure can
already appear in systems with 1.5 DOFs. In the theory of shells,
thongh Dy (LD) [Awrejcewicz et al. (2004)] is computed via LPE,
there is no unique relation between the signature of the LPE spec-
trum and the Dy, of a SA.

Intuitively, oceurrence of qualitative changes in the physical char-
acteristics of an attractor through the birth of an additional LE is
more realistic than the analogous reconstruction using the concept
of Dy. In fact, in the case of occurrence of an additional positive
LE there is a new unstable direction on the system trajectory, which
implies the qualitative new system dynamics. On the other hand,
the LD defines the averaged local volume preserving its quantity, i.e.
neither compressed nor extended. Observe that the LD includes not
only positive and zero exponents, but also negative ones. Though the
latter ones may be responsible for stability of any motion type, for
the steady-state motion they do not influence the system dynamies,
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since they rather define only metric properties of the attractor. It has
been shown in the reference [Wolf ef al. (1985)], that in general nega-
tive LE cannot be estimated through physical experiments approving
our remark that they do not influence the physical characteristics of
dynamical regimes.

In what follows, we consider transitions into chaos while changing
patterns of the LE spectrum, as well as transitions of system dynam-
ics with one positive LE into chaos with two positive LEs, i.e. into
hyperchaos. The latter transitions within chaotic regimes are referred
as chaos-hyperchaos transitions. The so far described phenomenon
for the case of flexible plates subjected to harmonic load has been
reported in reference.

In Table 8.9, time history w(t), w(w), Poincaré map wy (wpp)
and the power spectrum of the central shell point driven harmoni-
cally by qosin(0.46t) are reported. The mentioned characteristics are
given for three values of q(()” = 4,648, q[(,'"’) = 4,652 and q((,"” = 4,656,
and the mentioned loads are denoted by area €' on the dependence
A(qo) in Fig. 8.47. For ¢f: Ay > 0,02 < 0, g&: Ay > 0,M > 0,
gi: A1 > 0,A2 < 0, i.e. when we deal here with three equilibrium
configurations. Namely, for ¢ and ¢ the system is in a chaotie
regime, whereas for ¢ the unification of both attractors takes place

Table 8.9 Time histories, phase portraits, Poincaré maps and frequency power
spectra of the shell center (chaotic vibrations) for different go.

Type/ e o E KT Power spectrum
5 w(0.5;1) W) w,(w,,, ) S(o)
i i
chaos . s
“648) | I mA VA -l
hyper- | [PVYVVVEVEVEVILY 4 -
chaos \ Wi
(4652) ‘ m
chaos ' el | ¢ | . e n -
(4656) | | ’ ‘ | W | } {
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in the center of wy (wy+7). In the chaos hyperchaos regime, \; and
A2 achieve their maximum positive values, whereas A3 practically
remains non-affected.

8.2.5 On the Sharkovsky’s periodicity

One of the key problems in the theory of turbulence reduces to the
following one: How to predict the beginning of its occurrence from a
condition of stability and equilibrinum?

Feigenbaum begun his investigations from the analysis of intervals
between period doubling bifurcations of the square map. This map
was first investigated in 1845 by P. Verhulst, who studied ecosystems,
and hence the diagram y = 2% +¢ is named as Verhulst’s diagram. The
fundamental result obtained by Feigenbaum refers to its universal
meaning. The analyzed mechanism called a route to chaos via period
doubling bifurcations occurs not only for iterations cx (1 — ), but
also, in the case of mappings into itself: 22+¢, esin (7z) and ex? sin 7
defined on certain intervals.

Diagram of orbits shown in Fig. 8.48 allows to distinguish the
attractive periodic orbits for the functions f.(x) = #* 4+ ¢. Observe
that in certain parts the diagram is cut off. For instance, for ¢ ~ 1.75
a white strip is visible, and the attracting orbits are of period-3. The
natural question appears: Do other periodic orbits exist? The latter
ones should be repellers, since the diagram presents only attractive
orbits. It has been detected that the occurrence of the orbits with
period-3 implies an occurrence of orbits with periods n = 1,2,3,....
In 1975, Lie and Yorke [Li and Yorke (1975)] considered orbits with
period-3, but it happened that they studied only a particular case of
Sharkovsky’s theorem published in 1964 (see Section 2.4).

Let us compare two maps f. (z) = 2% + ¢ and f.(x) = 2% + ¢,
i.e. the logistic map in real and complex plane, and constructed LE
A1 (e) for the map f.(x) = 2% + ¢ (see Figs. 8.48, 2.9 and 2.10). The
diagrams of the orbits for two functions have attracting, repelling
and nentral points, which correspond to stable, unstable and neutral
equilibrinm states.

When starting from the vicinity of a fixed point, if we approach it
via the infinite interations process, this point is called an attractor.
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Fig. 8.48 Bifurcation diagram of the map f.(z) = @ + ¢, and zone of period-3
of the Mandelbrodt’s set.

Now, starting from a close neighborhood of the repelling fixed point,
we go away from it. Neutral fixed point is characterized by the
following: starting from its vicinity, we will remain in its neighbor-
hood neither approaching nor getting away from it.

In order to define stability of a fixed point Z of the map f(z), we
need to compute f'(z):if | f'(2)| < 1, then Z is attractive, if | f/(2)| >4l
then it is a repeller, and if | f'(Z)| = 1, then the point is neutral.

For the rational maps, owing to the Sharkovsky theorem, there
are cycles with all orders n = 2,3, 7 AN

A point (or points) of a complex plane is called an attractor, when
the process of iterations zp41 = f (2),n — oo takes place. In some
cases, a few attractors may exist, or they may constitute infinite
number of points and they may present a continuous curve or other
set, for instance Cantor set.

Mandelbrot set given in Figs. 2.8-2.10 has a particularly complex
structure. Each complex number ¢ either belongs to the Mandelbrot
set (M) or it does not. For Ve € M, the set is compact.
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In Fig. 8.48, certain parts of the Mandelbrot set fo(z) = 22 4¢>0
are shown. Diagram f.(z) = 2* + ¢ [Fig. 8.48(a)] exhibits points
evolution on the real axis of a Mandelbrot’s set. Each bifurcation
corresponds to new zones, which intersect axis x, and a period in
this case corresponds to the number of orbit branches. Point Cx
is called Feigenbaum point. In the diagram, between C = 1/4 and
('~ the period doubling process takes place when €' — Cx. For
(' > Cs, we have chaotic zone, period-3 window occurs for C' =
—1/7548777 ... Occurrence of period-3 implies occurrence of orbits
with periods n = 1,2,3,... In Fig. 8.48(b), the dependence of LE
A for the logistic map fo(x) = 22 + C is presented. Analysis of the
mentioned figures shows that the chaotic regime is interrupted, where
the sequence |fZ(z)| appears again in the periodic interval, which
corresponds to A; < 0. The so far carried out analysis implies that
construction of 1D maps for simple dynamical systems can exhibit
gimilar bifurcational phenomena for transition of mechanical systems
into a chaotic regime, as it has been found for our system with infinite
number of DOFs.

Let us study the application of Sharkovsky theorem to predict
the occurence of periodic orbits for the Marger—Vlasov Eqs. (8.153),
(8.154) with parameters k, = 48, = 0.01 under harmonic load exci-
tation ¢ = qgosinwpt for the simple support along the shell contour
(8.155) and for zero initial conditions (8.160). We take shell material
as elastic, homogeneous and isotropic v = 0.3; excitation frequency is
equal to shell natural frequency wp = 0.46. We report time histories
from the shell center and centers of its quadrants, phase portraits,
power spectra and Poincaré maps for the orbits predicted by the
Sharkovsky’s theorem. In Table 8.10, Sharkovsky’s orders 3, 5, 7, 9,
11, 13, in Table 8.11 — 2:3,2-5,2-7,2:9,2-11,2-13 and finally in Table
8.12 — 21 92 93 24 95 90 are reported. Besides the given depen-
dencies w (0.5;t), w (1), wy (wer) and S (w), in Tables 8.10-8.12
modal characteristics w (dw/dz ) for the shell point z = 0.375, sur-
faces and Sharkovsky's exponents (SE) versus go are shown. It should
be emphasized that the so-called Sharkovsky's orders do not appear
step by step in our investigated shell, but they can be appropri-
ately withdrawn from the whole plane of control parameters {qo,wo}
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(Tables 8.6 and 8.7). The following nonlinear phenomena have been
detected:

1. In the case of period tripling, time history exhibits period par-

Determanistic Chaos in One-Dimensional Continuous Systems

tition into three equal parts, for 5-5 equal parts, and so on.
Poincaré map consists of 3:5;7;9:11: 13 points. For orders 2.3,
2-5,2-7,2:9,2-11,2- 13 we have groups consisting of 2 points
cach. Phase portrait shows period doubling. Observe that local-
ization of points of Poincaré map is ordered for orbits with
periods 3;2 - 3:9;2 - 9:13;2 - 13, whereas for orders 5:7;11 and
2.5;2-7;2- 11 a reconstruction takes place, and the points are
located on the phase space in an arbitrary manner. The given
orbits present windows of periodicity within chaos, and their
structure is the same in the whole set of the control param:
eters {qo.w,}. All windows of periodicity have negative LEs
Ai €0,4 = 1,2,3.
. For each orbit described so far (point 1), the changes in shell
deflections in time w(z,t) (0 <z < 1;127,500 < t < 128,000) are
shown, which allows to study a chart of the shell deformati
depending on the orbit type 3; 5; 7; 9; 11. The increase in the period
implies a transition into spatio-temporal chaos of the shell.




