Chapter 5

Discrete and Continuous
Dissipative Systems

5.1 Introduction

In equations governing chaotic dynamics the dissipative proper-
ties of a system are usunally represented as resistance forces pro-
portional to a velocity. It is well known that there exist various
models taking into account the dissipative properties of mechani-
cal systems. It is known from an undergraduate course of theory
of vibrations that there are linear and nonlinear resistance forces,
and the nonlinear dependence can be approximated by various ana-
Iytical formulas. However, when a body is cyclically deformed, a
certain violation of the Hook principle may occur, which is repre-
sented by the hysteresis loop. The surface bounded by a hysteresis
loop defines energy lost per one cycle of vibration in a unit mate-
rial volume. It has been proved that the hysteretic loop surface, for
majority of the construction materials, practically does not depend
on the deformation frequency, but depends on the deformation
amplitude.

We briefly revisit typical dissipation processes which are widely
met while studying vibrations of the mechanical systems [Panovko
(1991)].
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106 Deterministic Chaos in One-Dimensional Continuous Systems

5.2 Linear Friction

In order to study a 1-DOF system with a linear friction (damping),
one may apply the following Lagrange equation

d (0T or oIl

= g [=g==%" tdk (5.1)

dt \ Oq Jq dq
where @, is the generalized force of a linear friction. In order to
define it, we assume that in each point of the system we deal with
linear dissipation

R; = —Bivi, (5.2)

where /3, is the friction coefficient. Since a general force

Z Ryt 0" (5.3)
i=1
and since
ors _ ow
dqg  9q’

- » Bv,-
Z j l’ = — z; ;3‘-1),'-%. (55)

From the following fm muld
dv; 10 1ov?
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we have

v
we get
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2 Oq— 94 = 2

The calculated sum
3;
¢ = Z %, (5.8)

formally coincides with the kmctlc energy and its associated dissi-
pative Rayleigh function. We transform (5.8) into a more compact
form
1. .
¢ = §bq2. (5.9)

where b is the generalized coefficient of a viscosity.
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Finally, we get the following formula for the generalized friction
force/viscous damping force
aP
Qe = ——— = —bq. :
Qu=~7; =i (5.10)
Since the kinetic energy T' = %aq'z and the potential energy I =
%('(/"’. the Lagrange Equation (5.1) takes the following form
(I'q dq
+b— +cq=0. i
a—ry i 3 (5.11)
For relatively small values of the viscous damping coefficient.
when b < 2y/ac, the general solution to the second order differen-
tial Equation (5.11) is

q = eM(Cy sin kot + Co cos kyt), (5.12)
where
L
h= 2—2 ky = Vh2 — k2, (5.13)
and constants Cy and C'y are defined by the following initial condition
dgq dqo
0)=qo, —(0)=—, 5.1¢
90) =g, —(0)=—~, (5.14)
which means that
40 4 hg
C = (“TIE Cy = qo. (5.15)
Another solution form follows
g= Ae Mt sin(k.t 4 a), (5.16)
where
U 4 hg)® Vh? — k?
A= \/(‘")—12“) ¢35, tana = qol— (5.17)
h® —k qo + hqo

As it can be seen from (5.12) and (5.16), the motion can be viewed
as the damped vibration with a constant frequency, but with succes-
sively decreasing amplitudes, and the full process is characterized by
a monotonous amplitude dissipation.

Envelopes of the damped oscillations are described by the function

A=+Ape™™, (5.18)

where Ay stands for the initial envelope coordinate.
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Frequency of the free damped vibrations is defined by the formula

Vb2 — dac

ke = Vh2—k2= 5.1
' 2a (5.19)
and time length of one cycle is
27 dra
Ty = - = ——. 5.20
ke /b2 —dac (5:20)

Since the influence of the damping force on the eigenfrequency of
the oscillating process is small, k, =~ k, T, = T.

Sequence of maximal deviations fits the geometric progression
rule, since owing to (5.18) the ratio of two successive maximum devi-
ations A(t) and A(t + T.), separated by time interval 7, stands for a
constant value equal to ¢"T+. Natural logarithm of that ratio is called
the logarithmic decrement, which is defined as follows

2mh b
A=hT, = e (5.21)
The logarithmic decrement measures a way of damping of the free
vibrations.
For essentially large values of the damping coefficient, when
b > 2y/ac. the general solution to (5.11) instead of (5.12), takes
the following form

g = C1e*"" + Cae®?, (5.22)

where

—b+ Vb% — dac -
S12 = % . (5.23)

Constants of integration are expressed through the initial condi-
tions and take the following form

—(5p52t & dqo st
C = =Cae* + g C, — 5200+ g€ (5.24)
: esit ’ L .5‘265'-’!‘(?“" m Sl(’”'-" g '

Motion governed by (5.22) does not have vibration character: for
arbitrary initial conditions, the values ¢ and ¢ asymptotically tend
to zero.
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The case when b = \f_ (eritical damping), the solution to the
differential Equation (5.11) is as follows

q = e M[C1e M + tCre™, (5.25)
where C'y = (qo — ’l_flllr“))/"—“ 2 (—{(IIF)/ =

5.3 Nonlinear Friction

In the case when amplitudes decrease is different from that of the
so far illustrated geometric progression, we deal with a nonlinear
friction.

Nonlinear dependence of the friction forces versus velocity can
be approximated by different analytical formulas. We assume that
the generalized friction force @, is proportional to the nth power of
velocity, whereas the power exponent n # 1 depends on the actual
properties of the friction force. Thus, dependence can be cast to the
following form

Q. = —blg|" 'q. (5.26)
The governing fundamental equation takes the form

()q

.
5 Hea=0. (5.27)

Exact solution of the nonlinear Equation (5.27) in the form of
elementary functions is not known, and hence in order to find ¢ = ¢(¢)
one may apply various types of approximating methods.

(a) Method of energy balance

Let the solution being sought be close to harmonic one and be charac-
terized by the frequency k., corresponding to the conservative system
without friction. Now, considering an arbitrary vibration cycle and
beginning time measurement with time instant where the deflection
achieves maximum, the motion is described by the function

q = A(t) cos kt, (5.28)
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where A(t) is the slowly changing function in time, i.e. AT < A,
A < Ak. Then in the generalized velocity

q = —Aksinkt + Acos kt, (5.29)
one may omit the second term, and hence
q = —Aksin kt. (5.30)

Owing to (5.26), the following generalized friction force is
defined as

Q. = —b(Ak)"|sin kt|™ " sin kt. (5.31)
Work of the friction force in the considered cycle is
T T
U :/ Q.qdt = —bk““/ [A |sin kt| ] dt. (5.32)
0 0

We may assume here approximately that in the considered period
the quantity A is constant, hence

T/4 /2
U = —4b(Ak)™! / sin™Flktdt = —4bA™ k" / sin™tlyp
0

p.
0
(5.33)
The integral appearing in (5.33) will be denoted by I, and it is

approximated by the Gamma function in the following way:
/2 =227 (.
= / sin™tp dp = —ﬁi
0 m(m + 1)I'(m)

Now, owing to formula (5.34), one may compute following values
versus the exponent m (see Table 5.1). It is easy to find that

U = —4bAK™H M I(n). (5.35)

(5.34)

Formula (5.35) presents the system energy change within the con-
sidered cycle. Since at the beginning and at the end of the considered

Table 5.1 m versus I [see (5.34)].

m 0 0.5 1.0 1.5 2.0 2.5 3.0

I 1000 7/8=0.875 w/4=078 0718 2/3=0.667 0.624 0.589
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cycle the kinetic energy is equal to zero, the change of the full sys-
tem energy is defined by the change of the potential energy, i.e. it is
necessary to take into account A(0) and A(T'). At the beginning of
the cycle, we have

1

I1(0) = §cA2(0). (5.36)
whereas at the end. we have
1
IKT) = §cA2(T). (5.37)

Consequently, the increase (negative) in the system potential
energy is

ATl = %c[A"’(T) — A%(0)] = -;-c:[A(T) + A(0)][A(T) — A(0)]. (5.38)

After a few transformations, the following finite difference equa-
tion is obtained as
4b(Ak)™1
At 2 I (5.39)

C

This equation matches the amplitude increase (negative) per one
cycle with the amplitude value at the cycle beginning, i.e. it defines
the shape of the upper envelope. Considering this envelope as a con-
tinuous curve governed by time function A = A(t), the following
approximating formula holds

dA 27 dA

Therefore, the equation of infinite differences (5.39) takes the form
of the following differential equation for the envelope:

dA 2bk™+1 I (m
an AU (5.41)
dt e
Integrating this equation requires considering two cases: m = 1
and m # 1. In the case m = 1 (linear damping), owing to the defini-

tion in Table 5.1 I = 7 /4, Eq. (5.41) takes the following form

@ (5.42)

dt
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where
bk? b
h=—=~—. 5.43
) 2¢ 2a (5.43)
A solution to the linear Equation (5.49) is as follows
A= A()C_m. (544)

where Ay stands for the initial coordinate of the envelope. Therefore,
for m = 1 we get the previous exact result (5.44). Although this
matching holds only for the envelope (due to the difference between
k and k, the graphs would be different), it supports the idea of
application of the method of energetic balance.

In the case m # 1 Equation (5.41) is nonlinear, but we may find
its solution, since the variables can be separated.

ohlm+1 (.
dA _ 20K Him) (5.45)
‘4111 we

Integrating (5.45) and taking into account the initial condition
A(0) = Ay, the following dependence is derived
A
A= 0 ; (5.46)

m—1 1 ‘2b(m—l)k"';(il(m):l".""t

A specific form of this formula depends on m. In the case, when
m = 2 (squared friction), formula (5.46) yields
Ay

s —2
1+ A

3re

(5.47)

which means that the envelope is described by a hyperbola. Applying
solution (5.46) we may also get the envelope for another important
case, when m = 0. Owing to (5.26), this case is associated with the
value

0y =< (5.48)

4|

defining the Coulomb friction, the volume of which does not depend
on the velocity magnitude. Substituting m = 0 into the general solu-
tion (5.46), we get

DINA
1 = .“” — -_! (549)

e
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i.e. amplitudes decrease via a linear rule and the amplitudes fit the
arithmetic progression. The latter result corresponds also to the exact
solution.

For m # 1 the ratio of two neighborhood largest deviations is not
constant. It means that the logarithmic decrement will depend on
the amplitude

A=1In (5.50)

1
Ai1
where ¢ is the number of the considered cycle. If, as it has been
assumed earlier, the difference AA; = A;4; — A; is small in compar-
ison to A;. then
Aip — AA; | (1 AA,-) AA

N ——, 5.51
i+1 A ( )

A=In

i+1
Substituting (6.5) into the last formula, we find the dependence

of the logarithmic decrement versus the amplitude of the form

_4bk™I(m)
B c

A A=, (5.52)

Consequently, only for m = 1 the logarithmic decrement does
not depend on the vibration amplitude and is constant within the
vibration regime. For m = 2, in the process of damped vibrations, the
logarithmic decrement decreases simultaneously with the amplitude
decrease, whereas for m = 0 (Coulomb friction), it increases while
the amplitude decreases.

(b) Method of slowly changing amplitudes
This approximating method has been proposed by Van der Pol for
a wide class of systems with weak nonlinearity, when the differential
equation can be presented in the following form

9%q g ) a
071 +kig=f (q. 8—;’) , (5.53)

where f(q, 51) is the function containing relatively small nonlinear
terms. Solution to the differential Equation (5.49) takes the following
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form
q = Acos(kot — @), (5.54)

where it is assumed that A and ¢ are functions of time. Depending
on the properties of the introduced functions A(f) and ¢(t), formula
(5.54) may fit well or wrong with the harmonic vibration of frequency
kq. For constant A and ¢ formula (5.54) fits the harmonic vibration in
the exact manner. In the case when A and ¢ are “almost constant”,
i.e. they exhibit slow changes in time, formula (5.54) describes vibra-
tions with slowly changing amplitude and phase. This behaviour is
typical for system dynamics with a weak nonlinearity.

If we substitute formula (5.54) into the fundamental Equation
(5.53), we get an equation with two unknown functions A and .
In order to carry out properly the change of one function ¢ by two
functions A and ¢, we need to add one more additional relation
between them. Van der Pol proposed the following one

i‘g cos(kot — @) + A% sin(kot — ) = 0. (5.55)
ot ot

If one integrates formula (5.53) then, taking into account (5.55),
the following simple formula for velocity is obtained:

Og = —koAsin(kot — @), (5.56)
ot

which is similar to that of constant A and . Therefore, formulas for
accelerations will be relatively sil'xgple and they will not contain the

e e 924
second-order derivative ‘:)—,} and %?52

P?q 0A | ; dyp
T —a—rk" sin(kot — @) — Aké cos(kot — @) + AA'U?)? cos(kot — @).
(5.57)
Substituting formulas (5.54)-(5.56) into the given Equation
(5.53), we get the following first-order differential equation
0A, | 0
—0—!/-'(1 sin ) + .41-7(,% cost) = f[Acos ) — Akysin ], (5.58)

where ¥ = kot — .
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Relations (5.55) and (5.58) yield the following derivatives:

A
?_ = —if[A cos Y — Akp sin ] sin 1),
ot ko (5.59)
.59
de 1 ;
B = mf[A cos 1 — Ak sin ] cos 1.

Assuming that the studied system is close to the linear one, we
may suspect that A and ¢ are not able to get relatively large increase
per one cycle 27 /ky and that derivatives %’,1 and %5,3 are constant
within a period of an arbitrary but one cycle. Therefore, although the
derivatives are expressed by rather complicated nonlinear functions
(5.59), we do not introduce a large error by taking their averaged
values over the period 27 /ko:

64 1 % i
B 2nky Jo f(Acos) — Akg sin 1)) sin yda),
d(p B 1 2

Bt~ okl f(Acosp — Akgsin i) cos yda).

(5.60)

Note that carrying the integration in (5.58) we keep A as a con-
stant value. In fact, this averaging procedure plays a key role in the
described method of slowly changing amplitudes.

Equation (5.60) can be rewritten in a more compact way

A B(A) dp _ W(A)

8t 2mky’ Ot 2mAky 26l
(short Van der Pol equation), where
2w
P(A) = — f(Acos — Akgsin ) sin di),
il (5.62)
V(A) = f(Acost) — Ak sin) cos pdi).

0

Therefore, first of all, the integrals (5.62) should be computed
assuming that A is constant. Next, differential Equations (5.61) are
Imtegrated, but without an assumption of constant A.
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Fig. 5.1 Hysteretic loop sketch.
5.4 Hysteretic Friction

When cycling deformation of the elastic bodies takes place, even for
small stresses the Hook's law is violated. In Fig. 5.1, a hysteresis loop
is presented in the following coordinates: stress o versus deformation
. The surface located in the inside of the loop defines energy amount
per one vibration cycle measured in a unit material volume. Since
a distance between loop branches are usually small, getting exact
hysteretic form via laboratory experiment is difficult.

[t has been found that the hysteretic surface of majority of design
materials does not depend on the frequency of the deformation pro-
cess but rather on the deformation amplitude, which is expressed by
the following formula

Q= adA™H, (5.63)
where a and m are constants defined via experiments. This depen-
dence differs principally from the formula (5.35), where the power
exponent of order m + 1 appears. Although formula (5.35) also
includes frequency k, it does not depend on the coefficient « in (5.63).

In order to define a pattern describing the damped vibration
with the hysteretic friction, the equation of energetic balance will
be applied. Namely, we compare the dissipated energy (it is taken
with the minus sign) and energy increase governed by (5.38) per one
cycle (period):

—aA™ = cAAA. (5.64)
This approach yields the equation in the form of finite differences
B = AT, (5.65)

&
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which, as in (5.39), can be recast to the following differential equation

dA ok n
dt _%A i

(5.66)

Integration of Eq. (5.66) under the initial condition A(0) = A,

yvields

Ao -
A=— —t. (5.67)
m-1/4 + (1,(n|—:127)rl;..-l!l

Note that for the hysteretic friction one may get the exponential
dependence (if m = 1), which is typical for the case of linear viscous
friction. Observe also that the Coulomb friction can be treated as
the particular case of the nonlinear friction (5.26), but also as the
particular case of the applied fundamental formula (5.66). In both
aforementioned cases, it is characterized by the value m = 0.

5.5 Impact Damping

In certain engineering systems, a key role of energy dissipation is
played by frequent impacts instead of the so far discussed continnous
action of friction forces. Let us, for simplicity, consider the case when
impacts take place in time instants corresponding to the system tran-
sitions through the equilibrium position assuming that the sudden
syvstem energy loss is proportional to the system energy before the
impact. In this case, the instantaneous energy loss can be measured
through the system velocity before the impact

0 = b, (5.68)

where b is a certain constant coefficient of mass dimension.

Let us consider a half-cycle of the vibration, which begins with
the largest deviation A(0).

During the first quarter of the cycle, the system moves with the
constant energy é(':‘l"’(()). and at the end of this quarter-cycle we have
v = ﬁ.—l"’(()). Then. an impact takes place implying a sudden energy
loss of the value of (5.68). Next, the system begins to move with the
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following energy amount

A2 . A2
cA=(0) —b—(‘AQ(O).—_ cA=(0) (1_2_1)),
2 a 2 a

(5.69)

which is constant within the second quarter-cycle of vibration. There-
fore. at the time instant corresponding to the end of this quarter-
cycle, the system potential energy is equal to that of (5.69):

cAX(T/2) _ cA%(0) (1 X 2_”) , (5.70)

2 2 a

Thus, we can define a ratio of displacements at the beginning and
the end of the first half-cycle as follows

A(0) 1

= ; 5.71
AT/2) ~ Ji-%a (5:72)

Similarly, for the second half-cycle we obtain
<l : (5.72)

AT) V31— 21)/(1..
Comparison of the largest displacements A(0) and A(T') yields
A(0) 1
AT) ~ i-2ja
In other words, the ratio of successive largest displacements is con-
stant. Therefore, the envelope of the curve of the damped vibrations
is characterized by the following exponent

(5.73)

A = Age M, (5.74)
which corresponds to the logarithmic decrement of the following form
1
=hT =In ————. 5.7
A=Hh In = 2b/a (5.75)

For small ratio 2b/a, we get
A = 2b/a. (5.76)
5.6 Damping in Continuous 1D Systems

In this section, we consider only linear continuous systems. Since
internal processes of energy loss of vibrating continuous 1D systems
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are very complex and require deep modeling including atomic
structural patterns of a material, there is no hope, at least in the
coming future, that a proper modeling of energy loss will be achieved.

5.6.1 Free vibrations

Let us apply a classical approach. Stress—strain relation of a linear
continuons one-dimensional structural member (string, rod, beam)
has the following form

Os

o=E (s 4 ué—) : (5.77)

where E is Young’s modulus, p = E'/E, E’ stands for viscous damp-
ing coeflicient, o(e) is the stress (strain) function in an arbitrary
cross-section of the analyzed mechanical object.

Considering a rod, its longitudinal force is derived using the fol-
lowing form

du 0%u
So = SE (E 4 ugxé‘t) , (5.78)
where u(x,t) is the longitudinal rod displacement and S denotes the
area of the rod cross-section. Dynamical equilibrium configuration
of the rod infinitely small element defined by intersection of two
parallel cross-sections governed by coordinates x and z + dz yields
the following equation

Pu 0 du  O*u
S—s = — 'l —
P20t = o [ES <8:1: N 8:5(%)] ° 1%

where p is the rod material density. Assuming that ES = const we
arrive at the following PDE
Pu ,[0%u 4 Pu
— = = ) '
or 0a2 " M oruot
7. e 2 — y i i i
\\'lu,u ac = a.f = E/p. The same equation is derived for the case of
('lt.h(-r transversal string vibrations or rotational rod vibrations (in
;llls case p = G'/G, where G is the shear modulus, and G’ stands
or the viscous damping associated with a shear processes, but with
different coefficient a).

(5.80)
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The following form of solution of (5.80) is assumed

u(x,t) = U(x)T(t). (5.81)
and hence we get
T()U(x) = [T)U" (x) + uT(t)U" ()] =0, (5.82)
or equivalently
T(f) - -zU”(J') 2

uT(t) +T(t) U@ T e 628)

where the constant value has been denoted by —a? (here and further

! = d/dx," = d/dt). The problem has been reduced to solve the
following separated two second-order differential equations
9
U"(x) + =U(z) =0, (5.84)
a=
T(t) + o uD'(t) + a>T(t) = 0. (5.85)

Solutions of these equations are widely described in the books
devoted to vibrations, and more recently in [Osiiski (1998)] (see
also Section 4.2). In order to solve the problem uniquely, we need
to define boundary and initial conditions. The introduced boundary
conditions allow to define the associated infinite number of eigen-
functions and the corresponding eigenvalues oy, n = 1,...,0¢ [see
(5.84)]. Equation (5.85), after substitution of T'(t) = e, yields the
following characteristic equation

P +alur+ai =0, (5.86)

and hence

1Y
2= —/—2— + anAn,

2.2
The damped vibrations oceur, when %ﬂ < 1, and

202 242 -An")
Tu(t) = (-’lu cosy/ L uf + B, sin w 1— u[) ()_—"'E—ul.
4 4
(5.

Discrete and Continuous Dissipative Systems 121

The upper critical damping yields the following solution

4141

Tu(t) = (Anch Apt + Bn sh A,t) 6—21” (5.89)
Iu the case of critical damping (20?2 = 4) we get
Ta(t) = (An+ Bnt)e i, (5.90)

It is worth mentioning that the damping depends on frequency
a,. and by increasing n the term a,u increases. It means that even
for constant g, the successive modes of vibrations are more strongly
damped [the case governed by (5.88)].

In the remaining two cases [Eqgs. (5.89) and (5.90)], the system
movement is aperiodic, perhaps with the occurrence of only one
vibration. Free vibrations of our mechanical object are described by
the following infinite series

=" T(t)Un(z). (5.91)
n=1

Assuming the following initial conditions
u(z,0) = uo(x),

v(z,0) = vy(x), 8:92)
we get
Y Tu(0)Un(2) = uo(a),
i (5.93)
Z Tn(())Un(-") = vo(x).
n=1

Since the eigenfunctions (modes) are orthogonal and are defined
by the boundary conditions, we obtain

i Hu(’ )Un(2)dz

Tn(()) = U2 T

Jo Vi) (5.94)
T,,(O) j" l() U,, dl

[y U2()da

f\'llt‘r(‘ | stands for the length of the structural member. Equa-
tions (5.94) define the initial conditions for Eq. (5.85). Using one
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M(x,t )+
M) O(x, 1)
bQ(

Ox, )+
Fig. 5.2 Forces Q(z,t) and torques M (. t) action on the beam element of length
dx.

>l
>

of Equations (5.88)-(5.90), depending on the damping, one finds the
associated Ay, Bj.

Let us consider beam vibrations now. In this simple model of
transversal beam vibrations y(z, t) influence of transversal forces and
influence of the rotational motion of beam cross-section are neglected.
Using the introduced rectangular co-ordinates (axis OX is horizontal
and it coincides with the beam middle line, whereas the axis OY goes
down). Equation of motion of the beam element dx can be derived
by taking into account Fig. 5.2.

Projection of the forces onto axis OX yields

deav@% = —Q(x,t) + Q(z,t) + dQ(z,t), (5.95)
where
o B OM (z,1)
Qz,t) = —5 (5.96)

In the above, E is the longitudinal elasticity modulus, I is the
moment of inertia of the beam cross-section regarding the middle
beam axis, and R denotes the radius of the beam curvature. In what
follows, we assume that the beam material is made of a viscous and
elastic material, and the stress-strain relation in the beam fibers has

the following form
Oe
co=FE ( + u ()f)

and = E'/E, where E’ is the viscous damping coefficient.

(5.97)
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Since
M 1 dry
B I:R +/la (E)] ) (5.98)
for a small beam deflection we have
1 PPy(a,t) .
= = .9¢
R(z,t) Ox? (5.99)
We finally derive the bending torque
Py(x,t) Py(x,t)
M(z,t) =—FEI ' > . 5.100
(%) ( dz? i dx2ot ) (5:100)
and the transversal force
oM o [0y(x,t) Py(a,t)
r,t) = — =—EI— - : 5.1(
Qa,?) dx £ oz [ a2 as% (5104}

and the increment of the transversal force

oQ o [0%y(x,t) Py(x,t)]
dQ = Ed’lj = —Elﬁf [ 022 + W 92201 dz. (5102)

Taking into account (5.102) in (5.95), we get

y(x.t) Py(x,t)  o0%y(z,t)
+ " aj, o
art TH agiar T or
where af = EI/pS. Equation (5.103) governs free beam transversal
vibr .Ltwus with viscous internal damping. Assuming the solution in
the form (5.81), we get

u'v(x) |T(t) + uT(t)] +ajU ()T (t) =0, (5.104)

=0, (5.103)

and hence
U@ _ o T
U) — "T(t) +pul(t)

Finally, the problem is reduced to the study of the following two
independent linear ODEs

UV (z) — kU(z) = 0, (5.106)
T + poa®T'(t) + o*T(t) = (5.107)

R (5.105)
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where o? = k*/ a%. It should be emphasized that Eq. (5.106) defines
the eigenfunctions (modes) and they do not depend on the internal
viscous damping.

We solve linear ODE (5.106), i.e. assuming U(x) = ™ we obtain

the following characteristic equation

-k =0, (5.108)
and hence 1y = k, 1o = —k, r3 = ik, 14 = —ik. It means that a

general solution of equation (5.106) is
U(z) = C1e*® + Cae™ + Cye’*™ + Cye™™** (5.109)
or equivalently
U(z) = Asin kx + Bcos kx + C sh kx + D ch kax, (5.110)

where four constant values A, B,C, D are defined via the boundary
conditions.

We restrict our further analysis only to the case of free-free beam
support. For the beam of length I the boundary conditions follow

y(0,t) =0, y(l.t) =0, (5.111)
y(x,t) _0 O%y(x,t) _0 (5.112)
or? | .o | or? |, '

Substituting (5.81), (5.110) into (5.111), (5.112) yields
B+D=0, —Bk+Dk =0,
Asinkl + Beoskl + C' sh kl + D ch kl = 0, (5.113)
— AK? sin kI — BK? cos kl + Ck? sh kl + Dk* ch kl = 0.

The characteristic equation is defined by

0 1 0 1

0 k2 0 k2
i = 5.114
sin kl cos kil sh kil ch kl 0 (5.114)

—k2sinkl —k2coskl k2sh kil k2ch ki
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or equivalently
k'sh ki sin ki = 0. (5.115)
Since sh kl # 0 for kl # 0, we get
sinkl = 0, (5.116)
which means that
kl=mm: m=12000 (5.117)
Each k, defines
U,(x) = Apsinkyx + By, cos kyx + C, sh kyz + Dy, ch kpa. (5.118)

Each of the infinite number of eigenfunctions should satisfy the
houndary conditions. Substitution of (5.117) into algebraic Equations
(5.113) yields

Bu =0, Du =0,

sin k1 sinnw (5.119)
Ch=— 2 Ay, =——A,=0,
n = ~EER T8 = Sy om0
and hence
Un(z) = Ay sinkpx = simm';—.. (5.120)

Equation (5.107) is the same as Eq. (5.86), and its solution has
been studied earlier.

5.6.2 Eaxcited vibrations

In this section, we consider 1D structural members (strings, rods,
beams) subjected to external load action. The load ¢ = ¢(x.t) is con-
tinuously distributed along a structural member length per its unit
length and depends on time. In the case of a longitudinally vibrating
}‘U(l. the load (force) is distributed along its length continuously and
in parallel to the rod axis z, whereas in the case of the rod vibrating
torsionally the torque is distributed along its length. In the case of
‘l.lt‘ string transversal vibrations, the load (torque) is continuously
distributed along its length, and is perpendicular to the string axis.
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One may show, pr oceeding in the way described in Section 5.6.1,
that in all cases the governing equation has the following form

Sulx.t) o [0*u(x,t) Pu(z,t)]
—,—0’7—’—0[ 922 + p D02 = bg(x,t), (5.121)

where b = 1/(pS).

In the case of a string a? = T/(pS), (T is the string tension, p is
the string material density, S is the area of string cross -section). In
the case 01 the rod longitudinal (torsional) vibrations a* = E/p,b =
1/(pS) ) (a* = G/p,b = 1/(ply)), where G is the shear modulus, Iy
is the moment of inertia of the rod cross-section, and ES = const,
G 1y = const.

The studied PDE Eq. (5.121) is linear and non-homogeneous. Its
solution consists of a sum of a general solution of the homogeneous
PDE (¢ = 0) and a particular solution of the non-homogeneous PDE.
We have already shown how to find the general solution to the homeo-
geneous equation and how to determine constants satisfying bound-
ary and initial conditions.

In the case of a particular solution to the non-homogeneous equa-
tion it should satisfy the boundary conditions, whereas the initial
conditions follow

u(z,0) = 0,

ou(z,t)
ot

(5.122)
= 0.
t=0

We apply the following approximation

=5 Qu(t)Un(x), (5.123)

n=1

and the solution is assumed to be of the following form

=) &n(t)Un(). (5.124)

n=1
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In order to find Q,(t), we multiply both sides of Eq. (5.123) by
U/,,(z), and compute an integral from 0 to [ to get

I 0 l
/ q(x,t)Up(z)dx = Z Qn(t) /0 Un(2)Ups(2)d. (5.125)
0 n=1 :

Since U, and U,, are mutually orthogonal, then

!
Qnlt) = / (e, ST (@),

VA = / Uy (x)dx.

We substitute (5.123) and (5.124) into (5.121) and we obtain

(5.126)

o0

€n(t)Un()- Z [ (U (@) +pén (U ()] = b Qu(t)Un(),

n=1 n=1 n=1
(56.127)
which yields
& = b b t II
&al(t) +u5n(t) (1’)
Finally, we separate time and space dependent functions to get
w?
Un (@) + —3Un(x) =0, (5.129)
En(t) + Pwﬁén(t) = "‘)gfn(t) = bQn(t). (5.130)

Equation (5.130) governs oscillations of damped non-autonomous
linear oscillators. Taking into account our earlier considerations cor-
responding to (5.130), we have the following solutions.

(i) Undercritical damping (4 > w?u?)

Exll) = / Qn(T "“’“’"“(' ™) sin ep (t — T)dT,
(5.131)

. wip
Cp = Wn l__%—-
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(ii) Supercntical damping (4 < w2u?)

Ea(t) = / Qn (T)e'i“’""(‘ =7) gh ¢s(t — T)dT,

- (5.132)

wap
1

-1

Cy = Wn
(i) Critical damping
Enlt) = / (% (T)e‘i“’ﬁ““"f)(t — 7)dT. (5.133)

Finally, the equation governing transversal beam vibrations,
where the beam is continuously transversally loaded by the load

q = qlx,t) per beam unit length, has the following form [see
Eq. (5.103)]
Pyl t)  Pylat) | 2%yt _ a@b)
ot T opier T e EI (5138
Substituting
oc
y(a,t) = &at)Un(@). (5.135)
n=1
o
=5 Qu(t)Un(@), (5.136)
n=1

into (5.134) we get

f,l(t)U,{v (@ ) *F #En(t)U,’gv('L) i abfn(t)Un(T) Qn( )U,.(:L‘)
(5.137)

or equivalently
U,{V(LL) abE,.(f) —lﬁQn( ) _

U"(m) - Enlt )+l»‘5n( )
Equations (5.138) yield two separated sets of ordinary differential

equations

=, (5.138)

UlV(z) — kpUn(z) =0, (5.139)
£() + WREn(t) + W3En(t) = ;ngn(t), (5.140)

where w? = ki/a}. a} = pE/EI
Solutions of the obtamcd Eqgs. (5.139) and (5.140) have already
been discussed.




