Chapter 4

Simple Chaotic Models

This chapter presents a short study of simple autonomous and non-
antonomous systems exhibiting strange chaotic attractors. In par-
ticular, the Lorenz and Réssler equations are discussed and the
geometrical properties of the chaotic attractors governed by these
equations are described. Other examples of autonomous chaotic sys-
tems include modified generators with inertial nonlinearity, Chua
circuit, systems with quadratic nonlinearities, labyrynth chaos, jerk
equations, two-scroll and three-scroll attractors, and Rikitake chaotic
attractor.

Examples of simple non-autonomous systems generating chaos
include forced van der Pol equation, Rayleigh equation, Duffing oscil-
lator and single-well oscillator, and externally and parametrically
excited oscillators.

The background given in this chapter is useful while exploring
the next chapters since many of the presented and discussed chaotic
attractors can also be found in the systems with infinite dimension.

4.1 Introduction

Nowadays, it is well known that numerous dynamical systems mod-
elling phenomena met in our universe are essentially nonlinear and
coupled, and cannot be presented and explained by traditional meth-
ods of mathematical analysis. It is impossible to obtain the algebraic
description for solutions to the mentioned problems in closed forms,
even though infinite series as well as special functions are applied.
However, desirable success can be achieved with the help of numerical
methods.
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[n many cases met in practice, the so-called transitional pro-
cesses are characterized by non-stationary and nonlinear phenom-
ena. including occurrence of large displacements of a studied system
and a complex and rich mechanism of the interaction between cou-
pled subsystems, energy pumping and dissipation. They include, for
instance, problems of fluid dynamics, such as the trans-sound phe-
nomena associated with the moving body and its interaction with the
flow. and other. All of the so far described phenomena may exhibit
turbulent behavior. This is why solutions to the so far mentioned
problems require computers with very large memories, and with the
possibility of realizing a few billions of operations per second.

The following three directions of research are associated with the
ualitative analysis of nonlinear dynamical systems:

(i) Rigorous mathematical proofs and analyses of properties of
hyperbolic and parabolic systems.
(ii) Construction of mathematical models of dynamics aimed at
purely scientific investigations, and their qualitative analysis.
(iii) Construction and investigation of simple archetypical models
exhibiting fundamental properties of chaotic systems.

The last direction of investigation attracted a lot of interest by
muuerous researchers, what yielded the fundamental results in the
field of deterministic chaos.

4.2 Autonomous Systems

4.2.1 Lorenz mathematical model (LMM)

[ what follows, we give a remarkable example demonstrating chaotic
dynamics, In 1959, E. Lorenz began his numerical investigation of
“ome meteorological problems including modeling and numerical sim-
tlations of convective flows in the atmosphere. The LMM has been
bublished in 1963, i.e. before the definition of a strange attractor
|Lm:ouz (1963)]. Lorenz aimed at a weather forecast for a longer
l’.“l'lu(l. Then, about thirty years later he came back to his accidently
discovered sensitive dependence on initial conditions of the derived
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Fig. 4.1 The Lorenz set (a photo from [www.giport.ru]).

differential equations describing atmospheric convection at the Mas-
sachusetts Institute of Technology (MIT) (see [Lorenz (1991, 1993)]).
The Lorenz strange attractor is shown in Fig. 4.1.

Let us consider a fluid layer of constant thickness H, subjected
to action of the temperature gradient AT'. If all motions are parallel
to the plane (2 — z) and they are homogenous in direction of y, then
the governing equations take the following form
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where ¢ is the function of the 2D flow, i.e. the velocity (v = (u, w))
is defined by the following formulas
o . oy
=== W = =52 (4.2)
where @ is the temperature field characterizing deviation from the
equilibrium state; g is the Earth acceleration, « is the coefficient of
(e temperature extension; v is the kinematic viscosity, k is the heat
rransfer coefficient,
A solution to this problem is known since Rayleigh, and it reads

W= 1y sin (T—I%) sin (%) . 0 =0ycos (%) sin (7[:) . (4.3)

The given solution starts to increase if the Rayleigh number R, =

(o)
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Rf=—————, (4.4)
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TR .9 1
min R, = o = 657.511 for a” = . (4.5)

One may solve system (4.1) in higher order approximations, when
instead of the simple Rayleigh approximation (4.3), the following one
is applied
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| [n this case, periodic boundary conditions on both directions are
l“_l'lnnl.-np(]_ Substituting (4.6) into (4.1), we get an infinite number
of ordinary differential equations (ODEs).

Lorenz [Lorenz (1963)] considered the following strong truncation
of the problem: ¢, = X, 6;; = Y and 0y = Z. In this case, with
the help of scaling transformations, the input system of equations
has been reduced to three ODEs of the form:

& =o(y—z), §=-wxz+rz—y, 2 =ay—Dbz (4.7)
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where o = v/k is the Prandt] number, r = Ro/R; is the Rayleigh
normalized number, b = 4(1 4 a?) is the geometric factor (time vari-
able is rescaled to the form 7 = 72(1 + a®)kt/H?). Equations (4.7)
are known as Lorenz equations. We have the following variables:
is the convection intensity, y is the temperature difference between
input and output flows, z is the deviation of the vertical temperature
profile with respect to the linear one.
In what follows, we report a few properties of equations (4.7).

1. Divergence

dr 0y 0z
D=—+—+——=—(t 1 4.8
aw+a!/+az (b+o+1) (4.8)
is negative, since b > 0, ¢ > 0 . Let us denote the volume element
of the phase space by I'(t), and hence a flow compression can be

presented in the following form
() = I(0)e~(bHotl)t, (4.9)

It is observed that all trajectories are bounded by a certain lim-
iting manifold.

2. Critical points
Condition # = = # = 0 is satisfied by the following points:

(a) * =y =z =0 — pure heat transfer without convection;
(b) X =Y = +£/b(r—1), Z = (r — 1) — stationary convection,
which is possible for r > 1.

3. Stability

We recast the linearized equations associated with (4.7) to the
following matrix form

d 0X —0 o 0 0X
ﬁ = |(r—2) -1 -z |[dY]. (4.10)
ol IS 7z Y T —b 07

Linear ODEs (4.10) allow to get some conclusions regarding sta-
bility of eritical points:
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(a) Point (X. Y.Z) = (0,0,0) is stable for r < 1, i.e. all eigenvalues
have negative real part; for r > 1, a real part of one of the eigen-
values becomes positive, i.e. the critical point becomes unstable
and hence the infinite small perturbation may imply convection.
Note that the stability of a critical point depends only on the
Rayleigh number.

(b) Point (X.Y,Z) = (£y/b(r —1);£y/b(r —1);r — 1) for r > 1
exhibits eigenvalues consisting of one real negative root and a
pair of complex conjugated roots. This pair of critical points
loses its stability for

_o(c+b+1) 411
~ o=b=1 (4.11)

If » > 0. the mentioned conditions are satisfied only in the case if
a>(b+1).

Remark 1

It occurs that the stability of the studied critical points does not
depend only on the Rayleigh number. Lorenz [Lorenz (1963)] chose
the following parameters: b = 8/3, o = 10. They yielded stability loss
of the convective state for r = 470/19 ~ 24.74..., D = —13.67. Let
us divide {r} into four intervals: (1) 0 > r > 1, (2) 1 < r < 24.74,
(3) = 24.74, (4) r > 24.74, and let us analyze a solution of Lorenz
cquations.

Lor e (0:1). All trajectories associated with arbitrarily chosen ini-
tial conditions move along a spiral into the coordinates origin,
Le. we have a globally attractive stationary solution.
€ (1:24.74). Origin loses its stability via bifurcation and is
ll‘;msformed into a pair of locally attracting stationary solutions:
er(/b(r —1), Vb(r —1),r—1), ca(—/b(r — 1), —\ﬁ(r —-1),r—
1). All trajectories tend either to point ¢ or ¢y, possibly besides a
set of trajectories of zero measure remaining in the origin neigh-
borhood.
9 1A 24.74. We deal with a critical value, for which ¢; and ¢z lose
their stability, but ¢; and ¢ do not tend to the limit cycles, since
for large r an inversed bifurcation takes place.

(8
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Fig. 4.2
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Fig. 4.3 Power spectrum of the Lorenz equations.

4. r > 24.74. The motion is of an essential disorder. It evolves in
a spiral manner in the neighborhood of one of the fixed points
(¢; and ¢2) within a certain time interval and then jumps into
the neighborhood of the second fixed point in an unpredictible
manner, and so on. This implies occurence of stretching and fold-
ing and creation of a complex manifold called a strange chaotic
attractor. Typical trajectories of this attractor are reported in
Fig. 4.2, whereas the associated power spectrum is shown in
Fig. 4.3.
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[ig. 4.4 Time history of the Lorenz equations.

Lorenz carried out long-term computations and stopped his
nmerical experiment. He observed a peculiar nmimerical behavior.
Assuming that the computations will be repeated with exactly the
same initial conditions, the numerical results should also be repeated.
Lorenz slightly changed initial conditions, decreasing a number of less
meaningful digits. Errors introduced by those changes were small. In
the beginning. the obtained results coincided with the previous ones.
However, the increase in the computational time yielded a new solu-
tion completely different from the previous one (Fig. 4.4). Lorenz
vepeated the computations many times to be sure of the obtained
results, However, what has been later recognized, he experienced the
high solution sensitivity to the introduced initial conditions, i.e. the
lundamental property of chaotic dynamics.

The obtained dependence is referred to as a butterfly effect, which
has been illustrated and discnssed in his work published in 1972
with the provoking title “Does the flap of a butterfly’s wings in
Brazil set off a tornado in Texas?" [Lorenz (1972)]. It means that
fl"' long-term weather forecast may fail due to the sensitivity of the
itial conditions (small changes may result in qualitatively different
Fesponse).
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Remark 2

1. For r ~ 24.74, the dynamics becomes chaotic, but a sequence of

the associated events implies chaos does not include any periodic

regimes, i.e. it does not coincide with the Ruelle-Takens scenario
initiating the occurence of a turbulent flow [Ruelle and Takens

(1971)].

For r = 145—148, the strange chaotic attractor is transformed

into a periodic limit cycle.

3. Further increase in r forces the limit cycle to vanish, and again
strange attractor is born, but for r = 210—234 the occurence of
another limit cycle is observed.

4. While moving between a limit cycle and a strange attractor,
new phenomena have been observed referred as intermittency of

o

various types.

5. Since the studied Lorenz system is truncated, another challeng-
ing research direction concerns the increase in the number of
modes in equations (4.6) to be taken into account during numer-
ical simulations.

Remark 3

1. One of the main disadvantages of the Lorenz analysis relies on
the rigorously introduced truncation of modes. Therefore, it is
of interest to know what happens when the number of modes
increases. The increase in the number of terms in (4.6) by one
implies a series of different regimes. Though it was possible to
find a strange chaotic attractor, the most sensitive parameter has
been associated with a number of modes. This means that trun-
cation of PDEs by keeping only a few modes cannot guarantee a
real system behaviour.

2. In spite of the criticism introduced so far, simple models such as
the Lorenz model are of interest since they may exhibit very rich
nonlinear dynamics.

3. An important role is played also by the investigation of conver-
gence of the solution series (4.1).
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1. Another challenging direction of investigations of PDEs is associ-
ated with the proof of existence of attractors of finite dimensions.

Investigation of the Lorenz equations opened a challenging
approach aimed at finding an even simpler set of ODEs exhibit-
ing chaotic strange attractors. Namely, it has been observed that
rescaling the Lorenz Equations (4.7) in the following way: (x,y,2) —
(cx,0Y,02 +7T), t — t/o, and taking into account r,0 — oo while
* = br/o” remains finite, the so-called diffusionless Lorenz systems
liave been obtained

T=y—=, Y=-z2, Z=zY-—1", (4.12)

where for wide range of only one parameter r* a strange chaotic

attractor has been detected (for instance, for »* = 1 the largest
Lyapunov exponent Apay = 0.21).

4.2.2 Réssler mathematical model (RMM)

In 1976, Rossler [Rossler (1976)] proposed the model governing a
chemical reaction of the following form

T=—-y—2 Y=ztay, z=b-—cz+22, (4.13)

where a,b,¢ are the system parameters. Lorenz in book [Lorenz
(1993)] has pointed out that O. Réssler has discovered a simpler
system of differential equations with chaotic solutions. The system
(41.13) is recast in the following way: first equation is differentiated
with respect to time, and after removing the second equation we get:

T —ar +(1+ z)x=(a+c)z —b, z2=b—cz+zz. (4.14)

. In this case, the Réssler system can be interpreted as an oscillator
With a parametric and external excitation, and their input depends
Ol the value of the amplitude of oscillations. Increase in the param-
“ler ¢ yields a series of period doubling bifurcations, and then a
St range chaotic attractor appears (Fig. 4.5). After achieving a critical
Pomt, a series of bifurcations matching stripes of a chaotic attractor
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Fig. 4.5 (a) Trajectories of the Réssler equations projected into the (z.y) plane
and the corresponding power spectraa = b= 0.1, ¢ = 2.6, (b) e = 3.5, (¢) ¢ = 4.1,
(d) e =4.18, (e) ¢ =4.21, (f) c=4.23, (g) ¢ = 4.3, (h) c = 4.6.

appeared. The Rossler system allows for an approximation of a 3D
flow into one-dimensional map [Lichtenberg and Lieberman (1984)],
which is defined by the strong contraction of the phase volume into
one of the eigenvectors.

Apparently, Rossler detected a simpler system exhibiting chaotic
dynamics governed by the following equations [Réssler (1979)]:

t=—y—2 Y= z2=a(ly— y?) — bz. (4.15)

The Réssler prototype-4 type (4.15) displays strange chaotic
attractors for @ = b = 0.5 (in this case, Apax = 0.094).
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4.2.3 Modified generator with inertial nonlinearity
(MGIN)

The MGIN is described by the following equation [Anishchenko et al.
(1999)] (similar to these have already been discussed in the first and
second sections of this chapter):

i =mr+y—zz, Y=-x z=—gz+2%(z), (4.16)

where ®(z) = 22 (for # > 0) and ®(z) =0 (for & < 0), m, g are the
system parameters, and m is proportional to a difference between
{he input and output energies, g is the relative relaxation time of
o thermistor. The given model is based on the classical schemes of
senerators, and in asymptotic cases it describes the Van der Pol gen-
orator. In a classical generator with an internal nonlinearity [Teodor-
chik (1964)]. the self-oscillations are guaranteed by introducing a
{hermo-resistor into the oscillation contour, whose properties depend
on the electrical loop current. Model of the generator with the iner-
tial nonlinearity illustrates various mechanisms of occurrence of the
deterministic chaos in the system with a homoclinic trajectory of the
saddle-foens separatrix type. Figure 4.6 presents (a) phase portrait,
(b) time history, and (c) power spectrum characterizing the period
doubling scenario.

It has been verified experimentally that in all dynamical sys-
tems where chaos ocenrs through the period doubling bifurcations,
a chaotic attractor has a fractal dimension 2 < d < 3, and its cross-
section has a horseshoe shape.

4.2.4  Chua circuit

Mathematical model of the Chua generator [Chua (1992); Chua
ct al. (1982, 1986)] is more complex than described in Section
----- since we have three equilibria, a symmetry and more com-

:.’l"-\' types of the trajectories. Equations governing system dynamics
ollow

T =aly — h(z)), Y=z —y+2z, z =-—Py—7z
(4.17)
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Fig. 4.6 (a) Series of period doubling bifurcations: phase portrait, (b) time his-
tory, (c) power spectrum,

where: h(z) = bx + 0.5(a — b)(|x + 1| — |« — 1]), and a,b,a, 3 are
the non-dimensional system coefficients. They can be recast to the
following form of equations

i+ i408z=0r, &= —% — ah(x). (4.18)

[}

In the system (4.18), owing to the symmetry, a doubled loop of
the saddle-focus separatrix is constructed which is responsible for the
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[ig. 1.7 Chaotic “double scroll” attractor (a = 0.1,b = 0.1,a = 15, 3 = 23).

ocenrrence of a more complex type of the chaotic attractor, and is
called a “doubled scroll” attractor. Its projection is shown in Fig. 4.7.

Chua circuit presents not only typical properties, being similar
to the generator with MGIN model and to the Rossler model, but
also exhibits a series of specific properties due to the symmetry.
In the reference [Awrejecewicz and Calvisi (2002)] the proposals to
build mechanical models/prototypes of the Chua circuit are given.
A gallery of Chua’s type attractors has been reported in the book
by Bilotta and Pantano [Bilotta and Pantano (2008)], where nearly
about 900 strange attractors have been detected. illustrated and dis-
cussed. The original Chua’s system (4.17) containing five parameters
. 4.9.a.b can be further simplified to get a system with only one
parameter of the form

t=ay—xr+(@x+1)—(x—1), g=z—-a  i=y. (419
The system (4.19) possesses a strange chaotic attractor for a = 0.5
(Amax = 0.11).
4.2.5  Conservative and other systems

['he antonomous conservative systems in the language of mechanics
refoy . S0 ) .
¢fer to the lack of damping and gyroscopic forces. Systems without
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damping and friction are rather unlikely to be found in nature, since
they are indifferent, i.e. neither attractors nor repellers. In this and
the next section, we do not present figures of strange chaotic attrac-
tors. On the contrary, we present only the differential equations and
the values of associated parameters responsible for the occurence of
a chaotic dynamics. A 3D autonomous system with quadratic non-
linearities governed by the following first order ODEs

b=y, GmiEmz, F=d=1f, (4.20

exhibits chaos for @ = 1 (Amax = 0.014), and it has been studied by
Nosé and Hoover [Hoover (1995); Nosé (1991)].

Thomas [Thomas (1999)] has discovered the so-called labyrinth
chaos governed by the following ODEs

#=siny, y=sinz, 2=sinz, (4.21)

where the state space is partitioned into 3D cells, and a trajectory
wanders between the cells via a pseundorandom way.

The word jerk defines the derivative of acceleration and it is
denoted by 7, where 7 is the position of a particle of mass m.
In England, the word jolt is used instead of the word jerk. It is rec-
ommended to control the jerk of public transportation vehicles to
avoid discomfort to passengers (it should be less than 2 ms~?) or to
avoid damage to transported fragile objects, like eggs. In addition,
in the aerospace industry a sensor measuring jerk is used, and it is
named a jerkometer.

Since the equation

=TT, 7T) (4.22)
can be projected onto one of the introduced rectangular co-ordinates,
i.c. 2,y or z, it yields a third-order differential ODE which can exhibit
chaotic dynamics. Though a general approach to transform any three
first-order ODEs to one “jerk” equation can be found elsewhere, one
may observe that both Lorenz [Eq. (4.23)] and Réssler [Eq. (4.24)]
systems have their counter part jerk forms as follows

T+(1l—o+b—d/z)i+[b(l+0o+ x?)
— (1 + 0)i/ali — bo(r — 1 —a*)z =0, (4.23)

Simple Chaotic Models 101

Y+ (c—a)j+(l—ac)y+cy—>b
— (9 — ay)(§ — ay+y) = 0. (4.24)

The simplest quadratic jerk equation yielding chaos has been pro-
posed by Sprott [Sprott (1997)], and it has the following form

T = —ait + i° — . (4.25)

For a = 2.02, it gives a chaotic trajectory wx(t), and its largest
Lyapunov exponent Apmax = 0.05. The simplest cubic case of the jerk
cquation has been presented by Malasoma [Malasoma (2000)], and
it reads

T = —ai + xd® —x, (4.26)
which exhibits chaos for a = 2.03 (Anax = 0.08). Another jerk equa-
tion studied by Malasoma [Malasoma (2002)] has the following form

T = —a(x + i) + zid + &/, (4.27)
which has been yielded by the systems
t=z Yy=-ay+z z=-T+ITY. (4.28)

The system governed by (4.27) exhibits chaos for 10.28 < a <
10.37, and its Kaplan—Yorke dimension Dy, = 2.003. Linz and Sprott
Linz and Sprott (1999)] presented the chaotic attractor of the jerk
equation

¥ =—ai—a&+ || -1, (4.29)

with an absolute value nonlinearity. For a = 0.6, the estimated
Amax = 0.036. The already illustrated Lorenz attractor (Fig. 4.7)
is known as a two-scroll attractor. The three-seroll system governed
by equations

t=x-yz, Y=-y+mxz, Z=-3z+2zY, (4.30)

Possesses also a chaotic attractor of Apax = 0.378. Finally, a four-
scroll attractor can be exhibited by the following ODEs

t=xr—yz, Yy=zx—y+zz, z=-3z+zY, (4.31)

Where the estimated largest Apax = 0.248.
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The last example of three antonomous first-order ODEs exhibiting
chaos deals with the so-called Rikitake dynamics [Rikitake (1958)].
The ODEs are as follows

i=—pr+yz, y=-—-py+(z-— a), z=1-—gy, (4.32)

where the parameter a is responsible for the difference in the angular
velocities of two disks, and the parameter « displays resistive dissi-
pation. For a = pu = 1. Eq. (4.32) exhibits the two-scroll attractor
with Amax ='0.13.

4.3 Non-Autonomous Systems

This section is devoted to simple nonlinear non-autonomous systems,
which in the language of mechanics are simple stationary or non-
stationary (parametric) oscillators usually harmonically excited.

We begin with the van der Pol externally excited oscillator gov-
erned by the second-order non-homogeneous differential equation of
the form

&+ b(x? — 1)@ + 2 = Fsinwt. (4.33)

This equation has been studied by Cartwright and Littlewood
[Cartwright and Littlewood (1945)], Levinson [Levinson (1949)], and
more recently by Levi [Levi (1981)]. Strange attractor yielded by
Eq. (4.33) can be obtained for b = 1, F = 1, w = 0.45, and the
largest Lyapunov exponent Agax = 0.04.

Another equivalent example of a strange chaotic attractor is
exhibited by the Rayleigh equation

i+ (2 — b)i + 2 = Fsinwt (4.34)

for fixed b=4, F =5, w =4 (Anax = 0.15).
One of the simplest second-order non-autonomous ODEs is that
of the following form

i+ xd? = sinwt, (4.35)

which exhibits chaos for w = 4 (Amax = 0.014). Certainly, the
non-autonomous Duffing equation [Duffing (1918)] belongs to the
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mostly revisited equations in mechanics, since numerous mechani-

cal/physical systems can be modelled by it. It has the following form
T+ ct 4+ aqgx + aga® = Fsinwt, (4.36)
where chaos has been detected by Ueda [Ueda (1979)] and Moon and
Holmes [Moon and Holmes (1979)]. In the mechanical language, the
case ay > 0,ap > 0 corresponds to the stiffening elasticity of the
systent, whereas the case of a; > 0,9 < 0 describes the softening
olasticity of the system. The latter one is also named as the Duffing
rwo-well oscillator. The two-well oscillator with damping governed
by the ODE
i+ @ —x+ 2% =sinwt, (4.37)

displays a strange attractor for w = 0.8 with Apax = 0.12. Another
1
example governed by equation
& + a3 = sin 2t (4.38)
concerns a single-well oscillator exhibiting strange chaotic attractor
with Apax = 0.09 [Gottlieb and Sprott (2001)].
Instead of a geometric-type nonlinearity one may take into
account a piecewiselinear system of the form
&+ |¢—z|+x—2=sint, (4.39)
which possesses a strange chaotic attractor with Ayax = 0.08. Two
other examples deal with the so-called conservative signum oscillator
i+ sgnr = sint (4.40)
and the exponential oscillator
T+a+e" —1=21sint, (4.41)
where both of them have chaotic response. There also exists a
documented research devoted to the analysis of simple oscillators
Parametrically and externally excited, governed by the following
non-dimensional differential equation
i+ o + wi (1 + heos(vt))x + Ba? + Ex® = ycoswt, (4.42)
and this case has been extensively studied both analytically and
Mimerically by Belhaq and Houssni [Belhaq and Houssni (1999)],
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assuming that the difference between frequencies w — wy is small. In
particular, it has been shown how the original quasi-periodic system,
i.e. the parametric and external excitations having incommensurable
frequencies, can be reduced to a periodically driven system. Chaotic
behavior of this oscillator has already been reported in reference
[Nayfeh (1983)] for £ = 0.

The approximate analytical criteria of chaos occurrence have
been proposed by Szempliriska-Stupnicka for £ = 0 [Szempliriska-
Stupnicka et al. (1989)]. Luo [Luo (2004)] gave analytical predictions
of resonant separatrix bands and studied chaotic oscillations of the
Mathien-Duffing oscillator with a twin-well potential. Shen et al.
[Shen et al. (2008)] investigated analytically the bifurcation route
to chaos also in the Mathieu-Duffing oscillator. Luo and Yu [Luo
and Yu (2014)] studied the case of Eq. (4.42) for { = 0.7 = 0. A
route from periodicity to chaos has been illustrated and discussed
via harmonic amplitudes varying with excitation amplitude in the
finite term Fourier series solution. The case of equation (4.42) for
h < 0,8 = 0 for negative and positive spring constants putting
emphasis to MEMS applications has been revisited in reference [Jin
et al. (2014)]. Both Melnikov and Galerkin methods as well as the
computation of the maximum Lyapunov exponents have been used
to unveil the controllability of chaotic vibrations of the system driven
by parametric pumps.

The Melnikov analytical and numerical techniques have been
applied to study chaotic motions of the Duffing—Van der Pol oscillator
with external and parametric excitations governed by the following
equation

&+ pi(1 — 2®) — ax + Ba® = f(1 + 6z) cos wt, (4.43)

in reference [Zhou and Chen (2014)]. The prediction of chaotic
dynamics based on the Melnikov approach has been verified
numerically.




