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Abstract: Hybrid stepper motors, because of non-linear nature of the governing
ordinary differential equations as well as the non-continuous character of the
excitation voltage, exhibit a behaviour interesting from a point of view of sys-
tem dynamics. In this paper, dynamical properties of such electrical machines
is studied with a help of mathematical modelling and numerical integration
methods. By using experimental data, parameters of a real object are identi-
fied and used to simulate its response under a number of circumstances. To
get a grasp of the dynamical phenomena occurring during motor’s operation,
standard methods for analysis of system dynamics (such as Poincaré sections
and bifurcation diagrams) are applied. As the simulation results show good
agreement with the experimental observations, conclusions can be drawn con-
cerning currently used methods of controlling hybrid stepper motors and some
of their disadvantages.

1. Introduction
1.1. Scope of the research

In the following investigations we analyse the dynamics of a system consisting of a hybrid
stepper motor loaded with a rotating cylindrical mass. Such synchronous machines are com-
mounly used in a number of industrial and household mechatronic devices such as positioning
systems, scanners, printers, digital cameras, optical drives, etc.

Their main advantage is that they can be used in design of very compact and simple
positioning systems using the open-loop approach, i.e. there is no need for a position feed-
back. This is especially advantageous when designing small or miniature devices. However,
those features come with a drawback of having to incorporate an appropriate control system
(driver), that is relatively more sophisticated than, for instance, in the case of DC motors.
This is because a number of methods increasing the system performance are commonly used,
such as voltage chopping and micro-stepping [1,10].

It is known that for certain rotational speeds this type of motor can exhibit undesired
behaviour, associated with its synchronous nature. For example rotor stalling may occur
when either the stepping frequency is too high or close to the resonance regions or there

is a sudden peak in the load torque. Because the ODEs governing such electrical motors
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are of non-linear nature, analysis of similar problems have drawn the attention of some
researchers [3,6,12].

Using approaches common in dynamical analysis, we try to understand the behaviour of
such systems on the basis of numerical simulations, as well as experimental set-up measuring
phase currents during the motor’s operation. Such analysis can prove crucial in efforts
to improve positioning accuracy and system performance by incorporating novel control

methods such as those described in [2,4,7,9].

1.2. Physical system

The physical system being considered in this research consists of the following components:
e hybrid, two phase, bipolar stepper motor,
e stepper motor driver,
e programmable logic controller (PLC),
e 36V DC power supply unit,
e incremental rotary encoder.

The overview of the system is presented in Fig. 1. It can be seen that the velocity and
position control is done by the PLC which serves as indexer and passes appropriate pulse
signal to the driver. This device generates the required voltages on the motor’s windings
using the electrical power from the dedicated power supply. In this system a position feedback
using a rotary encoder has been introduced to allow for measuring the system response. This
allows detecting when the set and actual angular velocities of the rotor start to drift away

from each other, resulting in a loss of synchronism. Mechanical part of the system can be

DC power
supply
Y
PLC = . _ | Stepper
(indexer) | Prver ~| motor
A
Encoder |<€

Figure 1. Overview of the considered electro-mechanical system.
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seen in the photo presented in Fig. 2. It consists of a shaft and cylindrical mass supported

on a ball bearing coupled with the motor using Oldham coupler.

Figure 2. Mechanical system: stepper motor (1), Oldham coupler (2), ball bearing support
(3), rotating mass (4).

2. Mathematical model

In what follows, we assume the physical model of the considered system shown in Fig. 3.
We model two windings with their respective resistances (R) and inductances (L), as well
as voltage sources V4 and Vp. The rotor of a hybrid motor consists of alternately placed
permanent magnet poles with equally spaced grooves around its circumference, that ensure
variable reluctance of distinct rotor positions.

According to a number of authors [5,8,11] in the case of a two phase stepper motor,
one can write four ordinary differential equations. Two of them are derived from the 2nd
Kirchhoff Law and the remaining two are Newton’s 2nd Law of Motion. In the case of a

system considered in this paper, they have been cast into the following form:

L% =Va — RIa + Knwsin(Nyy),

L% =Ve —RIp — KmWCOS(NT )’
(1)
J% = 7KmIA Sin(NrSD) + KmIB COS(NTSO) _ b“)7
dﬁ
dt

= w,

where: 14, Ip are currents in both phases; Vi and V4 are voltages applied to the
windings; R, L are winding’s resistance and inductance, respectively; K,, is the motor
torque constant, b is viscous friction coefficient, IV, is the number of rotor teeth, J is rotor’s

moment of inertia, w is the rotor speed and ¢ is its angular position.
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Figure 3. Schematic of a two phase hybrid stepper motor.

In the proposed mathematical model we assume the load on the motor comes only from
the inertia of the cylindrical mass and the linear friction (coming mainly from bearings on
which the device is supported).

Modelling the excitation voltages V4 and Vp as they appear in a real stepper driver is
however a little problematic. First of all, they are non-continuous, because of the stepping
nature of the system, which requires appropriate approach to the numerical integration. More
importantly, because it is common to use voltage chopping to increase the performance of the

system, V4 and Vg are not only time dependant but also depend on /4 and Ip respectively.

3. Experimental investigations

To perform identification of system parameters as well as to confirm the behaviour of the
system observed during numerical simulations, there is a need to proceed with a suitable
experiment. Owing to (1), we know that the state of the system is fully defined by a
following vector: [Ia, 5, go,w]T. Therefore in addition to a rotary encoder, a measurement

circuit for phase currents is necessary.

264



3.1. Experimental set-up

In the described experiment we use a shunt resistor current sensing method. In this approach
a shunt resistor (R;) is introduced into the phase circuits. Because its resistance is very low
comparing to the windings resistance R it does not introduce any disturbance into the motor’s
operation. Voltage drop on the shunt resistor allows to calculate the phase current value
using the Ohm’s Law.

To get reliable results an amplification circuit is necessary. In this application two bi-
directional shunt current sensors with the amplification rate of 50 were used. The schematic

of the measurement set up is presented in Fig. 4.
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Figure 4. Phase current measurement circuit.

3.2. Methodology and experimental results

In the experiment the excitation frequency f was gradually increased from 30 Hz up to 20
kHz. The excitation frequency regulates how many times step counter is incremented in a
unit of time. The resulting voltages from the current sensors were passed to two channels
of a digital oscilloscope. As a result XY plots have been made where on X axis we put
current in phase A and on Y axis current in phase B. During the measurements, the motor
driver was set to 1:8 micro-stepping. The results of those investigations have been gathered
in Table 1.

Those results allow to observe change in the trajectory on /4 Ip plane, associated with
the increase of the excitation frequency. For frequencies below 2.5 kHz distinctive points are
visible that are associated with each micro-step at which the rotor becomes stationary for
a short while. For this interval the curve is clearly of a circular shape. However, further
increase of the parameter f yields gradual change of shape of the curve. At 5.5 kHz the

trajectory resembles a slightly distorted square.
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Exceeding 6 kHz results in gradual decrease of the inner area limited by the trajectory
curve. It is associated with the fact that the motor’s windings can no longer be fully en-
ergized. For the interval from 6 kHz to around 11 kHz we observe further decrease of the
inner area, as well as a change of shape. At 11 kHz a sudden change of the trajectory shape
occurs and the motor stalls. We can observe that the trajectory curve starts to intersect
itself in several points. This instability phenomena takes place for the interval from 11 kHz
up to 11.5 kHz.

For 11.5 up to 13.8 kHz we once again have stable operation of the system, followed
by a wide instability region ending around 16.5 kHz. This region is followed by the stable
operation of the motor for the interval from 16.5 to 19 kHz, while the inner area limited by
the trajectory shrinks even further. At this point the motor pull-out torque is significantly
reduced, and even a small peak of the load torque can lead to the loss of synchronous velocity
of the rotor. For the frequencies close to the 20kHz the system in general behaved in an
unstable manner. Frequencies past the 20 kHz point were not tested.

The above investigations yield results similar to [3], but quantitatively not in agreement
due to the difference in stepper motor type and size. However, we can observe that when
the trajectory on the I4 — Ip plane starts to intersect with itself we deal with the instability

region.
Table 1. Results of the phase current measurements.

6.5 kHz

30 Hz

9 kHz 11.15 kHz
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12.5 kHz (unstable) 14.5 kHz 18 kHz

-

4. Numerical analysis

To perform in-depth analysis of the dynamical properties in the described system, numerical
integration methods prove to be crucial. As previously mentioned in section 2, modelling
stepper motor driver is quite complex. In the following investigations we are neglecting the
fact that a voltage chopper is used in a physical system. The physical parameters of the

system are presented in Table 2.

Parameter | Value Unit

R 5 Q

L 8.6x107° | H

b 6x 1073 N-m-s/rad
Ky, 0.55 N-m/A

\% 36 A%

J 179 x 107° | kg - m?

N, 50 -

Table 2. System parameters.

Three excitation functions have been used in numerical simulation: full-stepping, half-
stepping and sine wave (Fig. 5). The last of those approaches simulates micro-stepping
method - when using small micro-steps (i.e. 1:8 or smaller) the excitation function can be
approximated by a sine wave. The benefit of such simplification is that we do not have
discontinuities in the V(¢) functions, which results in much shorter simulation times.

Bifurcation diagrams (Figs. 6-11 b) were used to illustrate the dynamics of the system
under respective excitation methods. The control parameter is excitation frequency ¥ and on
the vertical axis we have one of phase currents (in this case 14). In every case ¥ = 27rad/s
corresponds to exactly four full steps, i.e. one full control sequence of the motor driver (as
illustrated in Fig. 5).

The initial conditions are zero at the left hand side of the bifurcation diagrams, but as
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Figure 5. Excitation functions used in numeric simulations: (a) full-step, (b) half-step, (c)

micro-step (1:8), (d) sine wave.
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Figure 6. Travelled distance (a) and bifurcation diagram (b) for full-step drive with high

acceleration.

we increase the value of the control parameter, we keep the end values from the previous
simulation. This allows for simulating a gradually ramping up speed of the motor.

There are two bifurcation diagrams for each excitation method. The former illustrates
ramping up with a higher and the latter with a lower acceleration. As can be clearly seen it
has a large impact on the results. When speeding up the motor slowly we encounter insta-
bility regions associated with resonance that manifest themselves in the diagrams. This is
most apparent in case of full-stepping and sine wave driver. Moreover, above the bifurcation

diagrams there are plots of the distance travelled by the rotor ¢ for each of the control
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Figure 7. Travelled distance (a) and bifurcation diagram (b) for full-step drive with low

acceleration.
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Figure 8. Travelled distance (a) and bifurcation diagram (b) for half-step drive with high

acceleration.

parameter values. If there are no missed steps, the value is constant. When there is loss of
synchronism, the motor starts to skip steps and the value tends to zero.

According to the simulation results, the highest rotational speed can be obtained with
a half-step approach. There is a resonance region between 1200 and 1600 rad/s that has
impact on the behaviour of the system, when the acceleration speed is low, especially when
the driver is in full-step mode. In general, there are two instability regions, indicated by
non-periodic trajectory, which confirms the conclusions drawn from the previously described

experiment.
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Figure 9. Travelled distance (a) and bifurcation diagram (b) for half-step drive with low

acceleration.
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Figure 10. Travelled distance (a) and bifurcation diagram (b) for micro-step (sine wave
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excitation) drive with high acceleration.

5. Concluding remarks

The carried out experiment allows to study system behaviour in the wide range of excitation
frequencies. During both the initial tests and the numerical simulation we detected instability
regions that can be associated with the mid- and high frequency instability phenomena [1].
In each of the cases, the loss of synchronous velocity is correlated with a sudden qualitative
change of the form the phase trajectory curve, e.g. the curve starts to intersect itself at
several points.

Results obtained so far suggest that detecting instability regions can be possible using
a relatively low-cost current sensors. Application of such method into the motor drivers can
allow them to detect and avoid problems associated with the loss of synchronism.

Numerical simulation shows good correlation with these results. By the use of bifurcation
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Figure 11. Travelled distance (a) and bifurcation diagram (b) for micro-step (sine wave

excitation) drive with low acceleration.

diagrams we were able to analyse the behaviour of the system using full-step, half-step
and micro-step drivers. Unstable regions of operation are clearly visible on the diagrams
as non-periodic trajectories and associated travel distance plots show missed steps as the
synchronous speed cannot be maintained. It has been pointed out that the acceleration rate
plays a big role in the response of such systems.

The correlation between the simulation and the experiment can be further improved by
modelling voltage chopper as an element of motor driver. In further research the authors
hope to improve the experimental set-up by, in particular, increasing the sampling rate of

the current sensors as well as acquiring the data in a raw form for future processing.
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