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Abstract: The paper introduces a model of two identical coupled 4-DOF mechanical
linear sliding systems with dry friction coupled with each other by a linear torsional
spring. The appropriate components (bodies) of the coupled systems are riding on two
separated driving belts, which are driven at constant velocities, and stick-slip
vibrations can be observed. In this case the physical interpretation of the considered
model could be two rows of carriages laying on the guideways and coupled by an
clastic shaft, which are moving at constant velocity with respect to the guideways as a
foundation. From a mathematical point of view the analyzed problem is governed by
eight nonlinear ordinary second order differential equations of motion yielded by the
second kind Lagrange equations. Numerical analysis is performed in Mathematica
software using the qualitative and quantitative theories of differential equations. Some
interesting non-linear system dynamics are detected and reported using the phase
portraits and the Poincaré maps. Next, power spectra obtained by the FFT technique
are reported. The presented results show periodic, quasi-periodic, chaotic and hyper-
chaotic orbits. Moreover, synchronization effects between the coupled systems are
also detected and studied.

1. Introduction

The question of stick-slip vibrations caused by dry friction is still opened. The fundamental laws of
stick-slip phenomena based on dry friction dynamics have been promulgated in the pioneering
experiments of Rabinovicz and in the works of Baumberger et al [7]. Firstly, a concept of nonlinear
dry friction should be explained. The force, which is required to start the movement of an object, is
called the static friction force, but the kinetic force is essential to maintain a constant velocity during
the movement of the body. A sufficient condition for stick-slip is that the static coefficient of friction
is higher than the kinetic coefficient of friction [10]. Stick-slip phenomena are expected during
contact interaction at low-velocity friction. The considered stick-slip phenomenon depends on
frequency of vibrations, a relative humidity and load. Stick-slip phenomena occur in everyday life, for
instance, from earthquakes, through brake systems (when car is started to move from stationary state)
[11], to nano-devices showing up in the scale above several microns. Examples of scientific literature
devoted to sticks-slip vibrations in system can be found in the references [1, 3, 5, 6, 8, 9].

Different models in micro- and macro-scale are used for description of stick- slip phenomena. In this

work an 8 degree-of-freedom model is used. The body consists of two identical subsystems coupled
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by torsion spring. Every subsystem rides on two separated belts which are driven at constant velocity.
Bearing in mind principles of relativity one can say that the bodies are moving because of immovable
belts. In this case the real interpretation of model may take place in a mine, where two rows of
carriages fixed to guideways are moving at constant velocity. As a nonlinear (in stick—slip regime)
system, the spring-slider model is very sensitive to weak external impacts,
which on a large scale manifests itself in phenomena of induced seismicity, triggering and
synchronization effects [2]. The considered in this work mechanical system can be treated as an

extension of the mechanical model presented in the paper [4].

2. Mechanical Model

The considered 8-DOF model (two coupled by torsional spring 4-DOF mechanical linear sliding

systems with dry friction) is shown in Fig. 1.
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Figure 1. The 8-DOF model with dry friction.
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The presented system can be considered as a planar system in the Cartesian coordinate system (in

the Earth's gravitational field with the gravity coefficient g ) with horizontal axis x and vertical axis
v . Dynamics of the considered system can be described by the following variables: x;;, v;; =X,
Y, Zn =¥, @r> Op=¢r, Xpa, Vip =Xp, X, Vi =X Yms Zm =yms P> Op =9p,
X125 V2 =Xy - The masses my;, my;; can rotate about the pivot axes S (moments of inertia about
the pivot point S of the mentioned masses are /;, I; ). The entire system is characterized by lengths
lys Iy (i=12,..,6) and springs with stiffness coefficients kj., ky;y, kl/'y’ k111'y
(i=12,45,6; j=3,45,6). Moreover, two additional masses m;,, my;, are laying on the appropriate
belts as a foundation, which are moving with a constant velocities v;q and vy, respectively.
Between the mentioned masses my,, my, and appropriate belts dry friction forces occur as a
functions of the relative sliding velocities v;o — X7, vyo — X0 , respectively.

Equations of motion of the considered system have been derived using the Lagrangian method

(the second kind Lagrange equations) [4] and they are as follows

d(oT)| oT oV
— = __+_:Qm (1)
dt\oq ) 0Oq Oq

where: ¢ - vector of generalized coordinates, @, - vector of generalized non-conservative force

acting in the system, 7' - total kinetic energy of the system, /' - total potential energy of the system,
t -time.
In this case dot means differentiation with respect to time ¢ . For presented previously 8-DOF model

with dry friction, vector ¢ is reads:

Ta
a=l. yne e X xm oy ene vl 2

Simultaneously, @,, can be described by the following vector

0,= [0, 0, 0, Fspy, 0, 0, O, FfrII]T' 3)

The friction forces Fj; and Fjy are equal to the product of nonlinear kinetic friction
coefficients 1y (vyo—X72), My (vyo—Xy2) (associated with relative velocities of every subsystems)
and the normal forces N; =myyg —(kp3,yn —kp3ylp3er), Ny =mypg = (ks yim —kpsylpzen)
which press the masses m;, and my;, to the first belt and to the second one, respectively. It should

also be noted that in numerical calculations the values of the normal forces N; and N;; can be less
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than zero, greater than zero or equal to zero. In the case of N;, N, >0, the friction contact between
masses mj, , my, and the appropriate belts moving with velocities v;q, v occur. In turn, the
case N;,N; <0 means a loss of friction contact between the masses m;, , my, and the appropriate
belts. This is why in our mathematical model we use a discontinuous step functions describing these

phenomena, and defined as follow

1 for N;>0,
0 for N;<0.

1 for NII >0,

4
0 for NUSO. ()

1(N1)={ 1(N11)={

Finally, forces Fj; and Fjgy; have the following form

Frr(vio = %12, yn-91) =
= up(vio = 2) - [mpg = (kp3y v = kpsylizep))- 10mpag — (k3 vy = ki3 l3er)s

)

FanOpo =Xy yim-9u) =

. (6)
= e Viro — X)) Impag — kpzyyim — ksl i@ 1mypa g — (ks v in = k3l 3 @i )-

Total kinetic energy 7 of studied model has the following form:
T_l .2 ) 1] ) 1 ) 1 .2 ) 11 ) 1 .2 (7)
—Emn(xn +J’11)+5 191 +5’”12)‘12 +3m111(x111 +)’111)+5 uen +5m112x112 .

Since small values of angles ¢; and ¢;; are taken into consideration, the total potential energy V

has the following form

1 2, 1 2
v :Eknx(xn +Iner —xp2) +Ek12x(x11 +ingr —xpp)" +
1 2, 1 2, 1 2
+Ek13y(yﬂ*113¢71) +Ek14x(x11*112€01) +5k14y(y[1*114(/71) +
1 2, 1 2,1 2
+Ek15x(x11 +1159r) +5k15y(y11 —Il1s01) +Ek16x(x11 —lpor)” +
1 2
+Ek16y(y[l +lp0r)" +mpgyn +
3
1 2, 1 2
+Ek111x(x111 +lner —xi2) +Ek112x(x111 +iney —xp2)” +
1 2,1 2, 1 2
+5k113y(J’111 —lio) +Ek1[4x(x1[1 =lien) +5k114y()’111 —lipapp)” +

1 2, 1 2, 1 2
+5k115x(xmJr1115€!)11) +Ek115y(y111*1116€011) +Ek116x(x111*1112€011) +

1 2 1 2
+Ek116y(y111 +l0n)” +mpmgym +Eks((pl -or)°.
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. . . d(oT )\ orT oV .
Computing the partial derivatives —| — [,—,——, based on (1), we obtain
dt\ 0q ) oq Oq

mp i+ (kpie + Koy +kpay +kpse + kpe)xn +
+ kel + ko = Kpadps + Kpsalps = kpexd 1)1 = (ke + kpai)xgs =0,
mp i+ (kg +kpgy + ks, + ki )y +
+ (k33 —kpaylia —kisylic + kpeyli7)op + mpg =0,
Lo + (kpd i + kpoxdpn = kpaxdpy + kyselis —kpexl2)xn +
+(=kp3ypliz —kpaylia —kysylis + ksl yn +
2 2 2 2 2 2 2 2 2
+(kpieliy + kol + kpaylis + kpaxdin + kpaylia + kpsidps + ks s + ksl ia + ke ylin)er +
= (ke + k)l + ks (9 = ¢1) =0, ©)
myaXpy = (kpx + ko )xp — (kg + k) iner + (kpy + ko )xp =
= (vio —Xp2) - [mpag — (kp3yyn —kp3ylpzep)]- 1mpag = (k3 yn = kisylier),
mun X+ (kg + Ko +kpay + ks, + ke )X +

+ (ki + ki = kiaxlnz + kisal s = kiexdn2)on = ki + ko)X = 0,
my ¥+ (kysy + kiay +kisy + kirey)ym +

+(=ki3ylns —kpaylna —kirsylire + kireylr7)on + ming =0,
L@y + ey i + ko in = kgraxdi + kirsslirs = ke ) xim +
+(=ky3ylys —kpraylpa —kisylie + kireylir) ym +
2 2 2 2 2 2 2
+kpadin + kioxlin + ki3l + kipaxdin + kipaylina + kyselins + kisylize)on +
2 2
+hyexlinn +kpeylir)on — kg + ko )linxy + k(@ — 1) =0,
mypXin = (ki + ko)X — e + ko) linen + iy + ko)X =
=t o = X12) (Mg — ks yim — ks ylpzen)]- 1myng — (ks yim — kipsylpzen)-

3. Non-dimensional form

We introduce non-dimensional time r:t/ mpy l(kp +kpp,) , non-dimensional coordinates

Xn=xn/ln> Yn=yn/lns Xpp=xp/ln» Xm=xm/ln > Yin=ym/ln» Xz =xy2/lp and

the following non-dimensional parameters:

ay =12 [kllx thpoy +kpay ks + kIéxJ (10)
mpy kpx +kpox

ay, =12 [klllx Fhpox +kpay + ks, + kIIGx] an
mip kpx +kpox

ap, = mpo [ kpaln +kppaln —kpaxlin + krsolis —kiexlin ] (12)
mpy (kpix +kpa)ln
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_mp (klllxllll kol —kpaxlus + kiselis —kiexlin ]
- b

arr
mpy (kpix +kp2:)in
_mp _ mypo | ke + ko
apz =——, a3 =— —k X >
mn myy Ix T K12y

by = mpy {k[?ay +kpgy +kpsy +k[6yj by = myy {k[13y +kipay +kysy +k116yj
= —— 9 - b

mp kpix +kpoy kpix +kpoy

mn

by = M2 kizylis +kpaplia +kisylis —kisylis
mpy (knx + k12
by, =2 kisylis + kpaylia + ksl —kpeylin
mpn (knx + k21
m
f _ 128

£ (kpy + kol

o = mpaln kil + kol = Kpaxlis + kisilis —kpexlro)
(kpe + k)1

_ mlzl[l(klllxllll + kIIleHl _k114xl[12 + k[]leIIS _k116x1112)
- >

m
(ki + k)

o = mplp(kpylps +kpaylia +kpsylis —kieylr7)
12 — B
(ki + ko)

. mpol i (kp3ylys +kpaylps + kpsyliye —kireylir)
2 = ,
(ki + k)

2 2 2 2 2 2 2 2 2
o3 mpp(kpixl gy + kpoxlyy + ki3ylys + kraxlp, +kpaylyy + kisxlps + kisylye + krexly, + kreyly;)
13 =
Ckp1x + k2017

clI3 =

(k[x +k12x)111
2
Cra = mpolh Cira = mplndin (ke + ko)
- b - ’
I (kpx + ko)
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(13)

(14)

(15)

(16)

a7

(18)

(19)

(20)

2

(22)

(23)

m12(k111x/1211 +hI12x! 12,1 +kI13yl 12,3 + k114x112,2 +kir4yl ,214 +kII5x! %15 +kII5 y112,6 +kiI6x! 1212 +ki16y! %17) (24)

(25)



dyyy = mpp ke + ko) _ mplin Gy + ko)

> d ,
myp (ki + ko) myplp (ki +kpoy)
- myokg ey = mpokg
- H - H
(kpix + ko) (ke + ko)
k3, mpokp3,,

en = X X > € = X X 5

(kpix +kp2y) mypy (kpix +kpoy)

Iy ki I3 mpkisy
e =" s fm=

In (kpye+kpoy)” In mpy (ke +kpoy)

and the following non-dimensional functions

In In : '
Hix Vio— X |=/uWio—Xr12),
[\/mIZ/(kllx +kpoy) mpy [+ kpay)

In In :
M Viro - X 1= S Wio = Xir2)
[\/mlz/(kllx +kpoy) mpa [(kpy + k)

I(mprg = (kp3yyn —kp3ypliner) = 1(fg —(enYn —enep))

I(myppg —(kysyyin —kpaylaen) = 1(fe — (e —epaen)) -

In result, equations of motion in the counter part non-dimensional form are as follows

{(.11 +anXn +aper—apXp =0,

Y +bn¥n —bper + fg =0,

@1 +enXn —cp¥n +cper —cpaXp + k(o — o) =0,

Xpp=Xn-@r+Xp = fuWio—Xn) U —(en¥n —eno)l- 1(f, —(en¥n —ener))
{(.111 +am X +ayey — a3 Xy, =0,

Y +binYin = by + fg =0,

P +cmnX i —cmYm +ci3pn —cpaX i + ki (o — ) =0,

X —dmXm —dpey +dn X =

= Juk Vo = Xi2) [y = emnYi — ema@i)]- 1(fg — (¥ — egrapp))-

4. Numerical computations

(26)

27

(28)

29)

(30)

3D

(32)

(33)

(34

Our numerical computations have been performed via the fourth order Runge-Kutta method with

constant time step ~#=0.001 and zero initial conditions. We consider symmetric system with the
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values of non-dimensional parameters and non-dimensional functions taken from the previous paper

[4], namely:

an =4ajg =q =0,07836, dry) =djpo =dadp =0,03344, ajy =dap3 =daz :0,04058,
bll = b][l = bl = 0,09375 5 blz = b][z = b2 = 0,03314 s Cr=¢C =1 = 0,02689 5
Crp =Crp =Cp :0,02666, Cr3 =Cp3 =C3 :0,06181, Cra =Cprq =C3 :0,03264,

d]]l :d]12 =1 ’ fg :0,00529, e =eyn =€ :1,37931 s €12 =€p =€) =0,47237 .

Kinetic friction functions 3 (V;o — X;5) and fy (Vi — X ;2) in our model are described by

the Stribeck functions. Because classical signum function is discontinuous, we decide to approximate

the mentioned functions by hyperbolic function with numerical control parameter ¢ and

VIO = VHO = VO in the form

) Vo—X . .
JuWo—Xp2) = 1o tanh[%]—a(Vo ~Xp)+BVo-Xp), (3%

. Vo—X . )
S Vo= Xp2) =t tanh[%] —aVy—X )+ Vo~ Xi2), (36)

with fixed 4y =08, a=15,59, f=4252,12 and &=0,0001.
Moreover, because functions I(f, —(e)Yy —exp)), I(fg — (&Y —e2y)) are also

discontinuous, in our computations we use the following approximations

Jin(fg — (Y —epr)) = tanh’

— Y, -
[M].I(J[g —(e¥y —ex9p)), G7)

Se —(eYg1—epr)
&

S (fe —(@¥m —ezfﬂn)):tanh{ J'I(fg — (e —eon). (38)

In result, in our numerical simulation we consider the following equations of motion
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Xp+a Xy +ayp —a3 X, =0,

Y1+ by —bypy + f =0,

Pr+a X —ep+e3pr —caXpy +k(op — @) =0,
Xpp=Xp—@r+Xp=fuVo—Xp)-[fg (¥ —epp)]- 1(fg —(eY1 —e201)),

X +a Xy + arpy — a3 X gy =0,

Yo + b = by + f =0,

Pir + X — ¥ + 3oy —ca Xy + k(o — ) =0,

X=X —on + Xy = fin (Vo = X112)-[fy = (@Y —e20)]- 1(fy = (eYin —e20011))-

(39)

5. Numerical results
Fig. 2 shows the phase trajecories of the system for the velocity of driving belt 7, =0.002 and zero

initial conditions in time interval 7 €[10000,12000]. The time interval was chosen to avoid the
transition state.

Obtained results and detect an irregular dynamics of the considered 8 —-DOF system. The phase
trajectories, Poincaré maps (Fig. 3) as well as power spectral densities (Fig.4) indicate that the
character of motion is chaotic. If we increase the value of V}, then the character of motion changes.
This situation is presented in the Fig. 5, Fig.6 and Fig.7. When the dimensionless velocity of driving

belts reaches the value of 0.05, the motion exhibit a periodic character.

- v

Figure 2. Phase trajectories of the system for 7{; = 0.002 in the time interval z € [10000,12000] .
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Figure 3. Poincaré map of the system for ¥, =0.002 in the time interval 7 €[10000,12000] .
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Figure 4. Power spectral of the system for 7 = 0.002 in the time interval 7 €[10000,12000] .
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Figure 7. Power spectral of the system for 7, =0.05 in the time interval 7 € [10000,12000]

6. Conclusions
In the paper mathematical model of two coupled 4-DOF mechanical linear sliding systems with dry
friction is considered. The considered system can be treated as a system of two identical 4-DOF

systems presented earlier in [4] and coupled by torsional spring. In this case the physical
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interpretation of the considered model could be two rows of carriages laying on the guideways and
coupled by an elastic shaft, which moves at constant velocity with respect to the guideways as a
foundation. From a mathematical viewpoint the mentioned system is presented as a nonlinear
equations of motion, which are obtained using second kind Lagrange's equations. Dynamics of the

analyzed system is carried out for one set of system parameters and various non-dimensional V.

Interesting dynamics behaviors of the considered system are reported using time series and phase
trajectories. The obtained results indicate, that the analyzed system possesses periodic, quasi-periodic
or chaotic orbits, as well as fixed points. Moreover, the mentioned results show that synchronization

effects between the coupled systems are possible.
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