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Abstract: The work presents simulations and dynamics of a rigid body lying on a 

vibrating table. An attempt of shaping and control the body dynamical behavior, by 

the use of manipulation of parameters of the table oscillations, is presented. This work 

is also an implementation of the specially prepared mathematical models of friction 

between table and the moving body. Those models are based on the integral model 

assuming the fully developed sliding on the plane contact area with the foundation of 

any pressure distribution. In order to simplify the calculations and reduce their 

computational cost, special approximations of the integral models of friction force and 

moment are used. They are based on Padé approximants and their generalizations.

1. Introduction  

The examination of systems with friction forces resulting between contacting bodies is significant 

part of theoretical and applied mechanics.  It has been investigated by scientists for years forming the 

separate branch of mechanics called tribology. Theoretical foundations analyzed in tribology focus 

mostly on stationary or periodical parts of motion. However, in mechanics one can encounter many 

examples, including the motion of bodies with friction, which shows that the transient stages between 

rolling and sliding can be a crucial part of analysis. The other problem in describing the system 

consisting of two contacting bodies with the dry friction forces is the normal pressure distribution 

over the contact area. The above mentioned difficulties can occur in daily life examples like the 

dynamics of billiard ball moving on the flat table, curling rocks, bowling ball, Celtic stone, rolling 

bearing and many others issues related to robotics. Many theoretical studies on such dynamical 

processes have been developed. In most cases they are based on simple static models of the static 

laws of Coulomb dry friction. Systems with Coulomb dry friction can behave interestingly in the 

instances of transition from sliding to rolling. However, the shape and size of the contact area may be 

the most important factor, which influence the global dynamics of the body. With the assumption that 

the flat base is deformed by the contacting body using the Hooke’s law, MacMillan [1] described the 

normal pressure distribution as a linear function. He used the elliptic integrals to describe the friction 

forces and torque in the case of the circular contact area. Contensou in 1962 [2] has presented the 

paper in which he assumes fully developed sliding and the classical Coulomb law of frictions forces 

with the plane circular contact area. Applying the Hertzian contact distribution, Contensou showed 
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the integral model of the resultant contact forces. Basing on the Contensou results, Zhuravlev [3] 

developed his theory and showed exact analytical functions, which defines the frictions forces and 

torque and he proposed special approximations on the basis of Padé approximations. Those models 

are much more suitable for the cases in which the relation between the sliding direction and the 

resultant friction components is considered. The dynamics of the motion of disk on a flat table was 

analyzed by Borisov et. al [8]. Kireenkov in [9] has proposed the model of rolling resistance, based on 

Padé approximations of resultant friction force and moment. He used the special contact pressure 

distribution on a circular contact area. In [4,5] authors presented the generalization of the models 

based on Padé approximants as the family of approximant models of friction forces. Application of 

the proposed models was considered in [6,7]. 

This work is the implementation of the proposed models of friction force and moment in the case 

of a rigid body lying on the vibrating table. By manipulation of the table oscillations’ parameters we 

shape and control the behavior of the moving body. Proposed models assume the fully developed 

sliding on the plane contact area with any pressure distribution. To reduce the computational cost of 

the equations we propose the simplifications of the model as well.  

2. Modeling of contact forces 

This part of the paper is thoroughly described in work [5] and for the purpose of this study we present 

the most important parts, which are necessary to understand the theoretical foundations of the 

problem. We consider the dimensionless form of plane, circular contact area F, with the Cartesian 

coordinate system Axyz., where x and y axes lie in the contact plane. We define the dimensionless 

length as the quotient of the actual length and the radius of real contact â . Point situated on the 

contact area F has the dimensionless coordinates ˆ ˆx x a�  and ˆ ˆy y a� . The following form of the 

non-dimensional contact pressure distribution is further assumed: 
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 In above expressions (Eq.1-2) ˆ( , )x y�  is the real contact pressure, N̂  - normal component of 

the real resultant force, d – rolling resistance parameter, 	  - angle describing direction of rolling. The 
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variables rxv  and ryv  are the components of the non-dimensional “rolling velocity” ˆ ˆr r a� �v v

rx x ry yv v� �e e  ( ˆ rv  is the corresponding real vector, ie  is unit vector of i axis). Proposed model of 

contact pressure distribution (Eq. 1) is the modification of Hertzian stress distribution, with the 

assumption that the center of pressure distribution does not coincide with the geometrical center A. 

Due to this assumption, we can implement the non-dimensional rolling resistance: 

r z S x S y rx x ry yy x M M� 
 � � � �M f e e e e e , (3)

where:  

1

5
rx sM d� ,

1

5
ry cM d� � .  (4) 

 In above expression (Eq. 3) S x S yAS x y� � �f e eASAS x is a vector denoting the position of center 

of non-dimensional pressure distribution S. The real counterpart of rolling resistance can be 

calculated as ˆ ˆˆr raN�M M . The assumption of fully developed sliding on the contact area F is 

made. We consider that the deformations of moving bodies are small enough to describe the relative 

motion as a plane motion of rigid bodies. As the result the motion is described by the following 

dimensionless linear sliding velocity in centre A: ˆ ˆs s sx x sy ya v v� � �v v e e , and the angular 

sliding velocity: ˆ ˆs s sx x sy ya v v� � �v v e e , where ˆ sv and ˆ sω denote the corresponding real 

counterparts and xe , ye  and ze  are the unit vectors of the corresponding axes. We apply the 

Coulomb friction law on each element dF of the area F:  

� �ˆ ˆ/ ( ) , /s s P Pd d N x y dF� �� � �T T v v ,  (5) 

where  sdT  and ˆsdT are elementary non-dimensional friction force and its real counterpart 

respectively. Pv  is the local dimensionless velocity of sliding and �  - dry friction coefficient.

The moment of the friction force sdT  about the centre A of the contact is described as follows:  

ˆ ˆˆ( )s s sd d d a N�� 
 �M ρ T M ,  (6) 

where ˆ sdM  is the corresponding real moment. Summing up the elementary friction forces dT and 

moments dM we get the total friction force T acting in the point A and moment M. The resulting 

integral expressions may possess the singularities in the case of lack of the relative motion. Therefore, 
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we use a small numerical parameter t�  to the corresponding integral expressions to avoid above 

mentioned singularities. Finally we obtain:
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The real counterparts of the friction force and moment can be found as ˆ ˆs sN��T T and 

ˆ ˆˆs sa N��M M  respectively. The above mentioned expressions (Eq. 7) have the integrals over the 

contact area and for the numerical simulations they are very time consuming and may be 

inconvenient. Therefore, we propose the corresponding components of the integral model, basing on

special modifications of Padé approximants:
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� � � � � �, 2 2 2 ,
, ,
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�
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Full set of relations and expressions can be found in the work [5]. 

 Using the proposed model of contact pressure distribution (Eq. 1) we get: 
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 Model presented in (Eq. 8) has the constant parameters: Tb , Tm , Mb  and Mm , which can be 

found by the process of optimization of the approximate model to the integral components. Those 

parameters may be identified experimentally as well. For this work we propose the following 

objective functions: 
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where D is the representative area of model’s kinematic parameters. Above expressions results in the 

following set of optimal parameters: 0.771Tb � , 2.655Tm � , 0.419Mb �  and 3.073Mm � .

 Finally, using expressions (Eq. 10) and the simplified model (Eq.8) adding a small parameter to 

avoid singularities we get the following form of total friction force and moment:
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3. Modeling the rigid body on the vibration table 

In this paper we propose the application of the friction model presented in (Eq.12) as the rigid body 

lying on the vibration table. Rigid body is assumed to be a ball (for example the billiard ball), situated 

on the table, which is allowed to make vibrations in x and y direction. Those vibrations have 

influence on the movement of the ball. We assume that the table can be rotated around x or y axis 

with angle α, which result in the external force Fg acting on the body. Model is presented in figure 1,

where the following notation is used: v – velocity of the ball center O; ˆ rv – linear rolling velocity;

ˆ sv - linear sliding velocity at the point A; ˆ sω – angular sliding velocity; ˆs�T – the resultant friction 

force acting at the contact center A; ˆ ˆ zN�N e  - the normal reaction acting on the ball; ˆ s�M –

moment of friction forces; ˆ r�M – moment of rolling resistance. It is assumed that a rigid ball rolls 

and slides over the vibration table, then: ˆ �rv v . 

Figure 1.  Rigid body and the vibration table contact area 

The analyzed dynamical system has five degrees of freedom and is governed by the following set 

of differential equations: 

ˆ gs
dm
dt �� �
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d
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where OA�r OA , m is the mass of the ball, B is a tensor of inertia in the mass center O. The matrix 

representation of the equation 13 can be presented as: 
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with the assumption that ball is homogenous and B=2/5mr2 is the central inertia moment of the body.  

The dynamical system in the Cartesian coordinate system Axyz is represented by the two scalar 

differential equations for the linear motion: 
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Since the permanent contact of the ball with the table is assumed, the third equation is 0zdv dt � .

The angular motion of the billiard ball is governed by the following equations: 
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where: r – radius of the ball; vx, vy – the corresponding  components of velocity of the ball center O;

x , y , z – components of angular velocity. In the global coordinate system XYZ presented in 

figure 2, OX  and OY  denote the coordinates of the ball center O. To compute the absolute position 

of the ball center we use the following expressions:  

O
x

dX
v

dt
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y
dY

v
dt

� . (17) 

The following relations can be used for calculations of the arguments of the above presented 

models of friction, in the case of no vibrations of the table:
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Since, the rigid body is lying on the vibrating table we apply the vibrations to the dynamical 

system by changing the expressions (18). We add the vibration parameters to the sliding and rolling 

velocities of the ball as follows: 
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where xA , yA are the amplitudes of the vibrations, a , b  are the  angular frequencies and y� is 

the phase of the oscillations in y direction. 

The results of the simulations of the ball’s motion are presented in figure 3. We use the model of 

friction forces (Eq. 12), changing the sliding velocity (Eq. 19) with the following parameters and 

initial conditions: ˆ 0.003ma � , 0.2� � , 1d � , 0.01t� � , 0.01r� � ,
29.81m/sg � ,

0.02r m� , 2.655Tm � , 3.073Mm � , 0.771,Tb � , 0.419Mb � , (0) 0OX � , (0) 0OY � ,

(0) 20x� � , (0) 0y� � , (0) 0z� � , (0) 0xv � , (0) 0.4yv � .For the simulations presented in 

figure 2 the following other parameters were used for the graph on the left: 1xA � , 0.5yA � ,

1000 /a rad s � , 500 /b rad s � , 0y� � ; and for the right graph: 1000xA � , 800yA � ,

1500 /a rad s � , 1200 /b rad s � , 1y� � . Table was rotated around y axis resulting. 

Figure 2.  Simulations of rigid body’s movement

For the simulations presented in figure 3 the following parameters were used for the top left 

graph: 1xA � , 1yA � , 1000 /a rad s � , 500 /b rad s � , 0y� � ; for the top right graph:

1xA � , 3yA � , 1200 /a rad s � , 1000 /b rad s � , 1y� � ; for the bottom left graph:

1xA � , 1yA � , 2000 /a rad s � , 1000 /b rad s � , 1y� � ; finally for the bottom right 
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graph: 1xA � , 1yA � , 800 /a rad s � , 1500 /b rad s � , 0.5y� �  and table was rotated 

around x axis.

Figure 3.  Simulations of rigid body’s movement 

4. Conclusions 

This work presents the possible implementation of the model of the resultant contact forces. Due to 

the complexity of computation of the integrals over the contact area, the authors proposed a model for 

the numerical simulations, which is based on Padè approximant. Possible application of the model is a

dynamical system consisting of a rigid body (billiard’s ball) lying on a vibrating table. By 

manipulating the oscillations of the vibrating table, different ball’s movements have been achieved. 

Results presented in this paper may be a good starting point for the verification of the presented 
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model not only by numerical simulations, but with the real object as well. Developing such a 

dynamical system and its technical implementation may be the authors’ object of interest in future. 
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