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Abstract: The method for studying the geometrically nonlinear vibrations of 

functionally graded shallow shells with a complex planform is proposed. Сomposite 

shallow shells made from a mixture of ceramic and metal are considered. In order to 

take into account varying of the volume fraction of ceramic the power law is accepted. 

Formulation of the problem is carried out using the refined geometrically nonlinear 

theory of shallow shells of the first order (Timoshenko’s type). The R-functions 

theory, variational Ritz’s method, procedure by Bubnov-Galerkin and Runge-Kytta 

method are used in the developed approach. A distinctive feature of the proposed 

approach is the method of reducing the initial nonlinear system of equations of motion 

for partial derivatives to a nonlinear system of ordinary differential equations. 

According to the developed approach first it is necessary to solve linear vibration 

problem. Further to solve elasticity problems for inhomogeneous differential 

equations with right hand side, containing eigen functions. Obtained solutions of these 

problems are applied for representation of unknown functions of the nonlinear 

problem. Application of the theory of R-functions on every step allows us to extend 

the proposed approach to the shell with arbitrary shape of plan and different kinds of 

boundary condition. The proposed method is validated by investigation of test 

problems for shallow shells with rectangular and elliptical planform and applied to 

new vibration problems for shallow shells with complex planform.

1.Introduction 

Structure elements simulated by shallow shells are widely used in various engineering fields: 

mechanical, aerospace, marine, military, civil engineering and others. Such elements can have a 

various planform, boundary conditions including mixed ones and types of curvature. In order to 

improve the strength of the modern design the new class of the composite materials, functionally 

graded materials (FGM) are applied. In spite of FGM are inhomogeneous materials they have 

essential advantage over composite ones, because they possess smooth and continuous variation of 

material properties in the thickness direction. It eliminates the stress concentration presented in 

laminated structure. But analysis of functionally graded (FG) shells is more complicated than 

homogeneous material structures. It is connected with the following fact. Governing equations of the 

shallow shells made of FGM are partial differential equations with variable coefficients. As known 

solving of such equations supplemented by various boundary conditions in case of an arbitrary 

planform is very difficult problem. In addition the problem is compounded if FG shallow shells 

performs vibration with large amplitudes. This class of problem is challenging and there exists 
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numerous of investigations devoted to analysis of dynamical behavior of the FG plates and shells. 

This is especially true for linear problems [1-5]. In the last decade in addition to the linear vibration 

analysis nonlinear free and force vibrations of the FG shells have been extensively studied [6-8]. A 

complete survey on the linear and nonlinear vibrations of FG plates and shells can be found in the 

following papers [3-7]. Note that in the aforementioned papers nonlinear vibration of simply 

supported or clamped FG structures with rectangular, skew or circle planform was analyzed by 

different numerical methods such as finite element method (FEM), Differential Quadrate method, 

domain decomposition approach, Haar Wavelet Discretization method, modified Fourier-Ritz 

approach and others. Some survey on vibration concerning the open revolution shells can be found in 

[5, 6, 8]. The analysis of published literature on the nonlinear vibration of FG shallow shells is 

restricted to simple plan-form and classical boundary conditions. But in practice FG shells with an 

arbitrary planform and different boundary conditions are widely used. Consequently it is important to 

develop universal and effective methods for investigation of nonlinear vibration of functionally 

graded shallow shells with complex planform and different boundary conditions. Earlier in papers [9-

12] the original meshless method based on application of the R-functions theory, variational Ritz’s

method, procedure by Bubnov-Galerkin, method by Runge-Kutta  has been proposed.  

The main aim of this paper is development of this efficient and enough universal method to 

the new class of the nonlinear problems-geometrically nonlinear vibrations of the FG shallow shells 

with an arbitrary planform. The proposed method is validated by investigation of the test problems for 

shallow shells with rectangular and elliptical plan-form and applied to the new vibration problems for 

shallow shells with complex planform. 

2. Mathematical formulation 
Consider functionally graded shallow shell with uniform thickness h made of a mixture of ceramics 

and metals. It is assumed that shells can have an arbitrary planform as shown in Fig 1. As known [1-3, 

6-8] in FGM structures material properties are proportional to the volume fraction of the constituent 

materials 

� � � � � � � � � � � � mcmcmcmcmcmc VzEVzEVEEzE �������� ��������� ,, ,   (1) 

where �,E  and � are Young’s modulus, Poisson’s ratio and mass density respectively. The 

subscripts c and m denote the ceramic and metallic constituents. Ceramic volume fraction is denoted 

by cV . In this work value  cV  is expressed as  
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 Let us note that the volumes of all constituents materials should add to up one, i.e. 

1�� mc VV . Index k  � ��� �k0  denotes the volume fraction exponent, z is the distance between a

current point and mid-surface. In particular case when the power index k is equal to zero then we 

obtain homogeneous material –ceramic, but if k approaches infinity then we have pure metallic shell. 

 According to the nonlinear first order shear deformation theory of shallow shell (FSDT), the 

displacements components  321 ,, uuu  at a point ),,( zyx  are expressed as functions of the middle 

surface displacements vu,  and w  in the OyOx ,  and Oz  directions and the independent rotations 

yx �� ,  of the transverse normal to the middle surface about the Oy  and Ox  axes respectively as [2,6]:

wuzvuzuu yx ����� 321 ,, �� . 

Strain components � �T122211 ;; ���� � , � �T
122211

;; ���� � at an arbitrary point of the shallow shell 

are: 
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yyxx ww ���� ���� ,,, 2313 , xyyxyyxx ,,,,, 122211 ������� ���� .              (3) 

The in-plane force resultant vector � �TNNNN 122211 ,,� , bending and twisting moments resultant 

vector � �TMMMM 122211 ,,� and transverse shear force resultant � �Tyx QQQ ,� are calculated by 

integration along the Oz -axes and in the matrix form are defined as 

� � � � � � � ����� DBMBAN ����� , ,       (4) 
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Transverse shear force resultants yx QQ ,  are defined as: 
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2333
2

1333
2 , �� AKQAKQ sysx �� ,       (6) 

where 2
sK  denotes the shear correction factor. In this paper it will be selected by 5/6.

Mass density �  is also defined by integration along thickness: 
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The strain and kinetic energy of the FG shells is given by  

� � ��� �������
�

dQQMMMNNNU yx 2313121222221111121222221111
2

1 �������� , 

� � � � � ��� �������
�

dxdyIvuIwvuIT tytxtyttxtttt
22

21
222

0 ,,,,,,2,,,
2

1 ���� ,   (7) 

where 

� � � �
� �� �

2
2

2

1
212

h
kk

k
zdzzI mch

h ��
�

���
�

��
�

,

� � � � � �
3

2

2

2
2

44

1

2

1

3

1

12
h

kkk
dzzzI mc

m
h

h 		



�
��



�
		



�
��



�
�

�
�

�
�

�����
�

��
�

�    (8) 

Applying the method by Ostrogradsky-Hamilton the equations of motion can be obtained. 

These equations are supplemented by the corresponding boundary conditions. 

3. Solution method  
To solve this problem we use the approach proposed in [9]. To implement this approach it is first 

necessary to solve the linear problem of free vibrations of FG shallow shell. For this purpose the 

vector of unknown functions is represented as 

� � � � � � � � � � � � tyxyxyxwyxvyxuUtyxtyxtyxwtyxvtyxuU yxyx  ���� sin)),(,,,,),,(,,()),,(,,,,,,,,,),,,((
��

� , (9) 

where   is a vibration frequency. Applying the principle of Ostrogradsky-Hamilton we get the 

variational equation in the form 

� � 0maxmax ��! TU  ,        (10) 

where expressions for strain U and kinetic energy T  are defined by relations: 

� � ��������� ��
�
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� � � � � ��� �������
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Minimization of the functional (10) will be performed using the Ritz’s method and we will 

build the necessary sequence of coordinate functions by the R-functions theory [13, 14].

To solve the nonlinear problem according to the approach proposed in [9] we represent 

unknown functions in the form of an expansion in the eigen functions ),(
)( yxw c

i ,
� �� �yxu c
i , ,

� �� �yxv c
i , , ),(
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xi� , ),(

)( yxc
yi�  of the linear problem with coefficients � �tky  depending on the 

time: 
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Note that the functions ijij vu ,  should be found from the following set of differential equations: 
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Operators  21122211 ,,, LLLL  are presented bellow 

� � � � � � yyxyxx CCCL ,,2, 66161111 ��� , � � � � � � yyxyxx CCCL ,,2, 22266622 ��� , 

� � � � � � yyxyxx CCCCLL ,,)(, 266612162112 ����� . 

The system of equations (12) can be solved via RFM virtually for any planform and various kinds of 

boundary conditions. Substituting expression (11) for the functions yxwvu �� ,,,, in the equations of 

motion and applying the Bubnov-Galerkin procedure, we obtain the following system of nonlinear 

ordinary differential equations for the unknown functions � �ty j :   
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The expressions for the coefficients � � � �r
ijk

r
ij () , are the same with [23, 25, 28] 

The solution of equation (13) can be found by various approximation methods. In this paper 

we used the Runge-Kutta method. At the same time in the numerical implementation we were limited 

to only one mode. Thus, instead of the system of equations (13) we find the solution of one 

differential equation.   

4. Numerical results  

In order to verify the proposed approach we have solved some test problems and compared obtained 

results with available ones. In particular case we considered FG shallow simply-supported shells with 

square planform. Obtained results we compare with results presented in [1, 7, 8] for mixture 

32/ OAlAl  and various shallowness ratios and different thicknesses. Comparative analysis has shown 

that the results obtained using the refined theory of the first order (RFM, FSDT) are almost the same 

as presented in [8]. A deviation from the results obtained by theory of the higher order (HSDT) [1]

does not exceed 4%. Deviations results obtained by using the classical theory (RFM, CST) with the 

results of [7] do not exceed 2%. In general, it should be noted that the classical theory leads in most 

cases to overestimate the fundamental frequencies compared with the refined theory. 

The second testing example considers a clamped FG moderately thick doubly-curved shallow 

shell of elliptical planform with 2.0/2,1.02/,2/,1/ ���� xyx RaahbaRR , where a  and b  are 

ellipse semi axes. Two types of FG mixture are analyzed. Properties of the FG mixture are the same 

with [8]: 

FG1: 3
32 /3800/2707/,3.0,380/70/:/ mkgGPaEEOAlAl cmcmcm ���� ���� ;                  (14) 

FG2: 3
2 /3000/2707/,3.0,151/70/:/ mkgGPaEEZrOAl cmcmcm ���� ���� .                (15) 

Fig. 1 shows comparison of the fundamental frequency parameters  ccL Eha /2
1 � �� as a 

function of the volume fraction exponent k. It can be observed that presented results are in excellent 

agreement with those reported by S.M.Chorfi and A.Houmat [8].  
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Fig. 1. Influence of the power-law exponent k on the frequency parameter 

ccL Eha /2
1 � �� of the FG spherical shallow shell of elliptical planform 

The non-linear free vibrations of the clamped spherical shell with elliptical planform will be

investigated also. Fig 2 shows the non-linear frequency amplitude relationships (backbone curves).  

 In Fig 2. the backbone curves are compared  with available [8] for mixture FG1 and two 

values of the parameters 1,0 �� kk , and for mixture FG2 and values of the parameters 

100,10 �� kk . Comparison of the backbone curves with the results of [8] confirms the accuracy of 

the proposed approach. The results are practically the same within the accuracy of the plot. Deviation 

does not exceed 1%. 
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Fig.2 Comparison between frequency response curves of the clamped spherical shell with 

elliptical planform with results presented by S.M.Chorfi and A.Houmat [8]

To contribute to new results and to illustrate the versatility and efficiency of the proposed 

method let us complicate the elliptical planform of shells. Assume that shell has the planform 

presented in Fig. 3. Geometrical parameters are

2.02/,35.02/,2.0/2,1.02/,5.02/,1/ 11 ������ aaabRaahabRR xyx . 

Material properties of the mixture (FG1, FG2) are the same as in task 2. Suppose that shell is 

also clamped. Then the solution structure [13] may be taken in the following form 

54321 ,,,, +�+�+�+�+� *�*�*** yxwvu ,   (17) 

where 0�*  is equation of the border of the shell planform. In order to realize the solution structure 

(17) we should construct the equation of the border 0�* . Using the R-operations 00 ,,-  [13], we 

build the equation in the form: 

� � 30201 fff -,�* ,       (18) 

where � �3,2,1�if i  are defined as  
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Investigation results for FG clamped spherical shell with planform shown in Fig.3 have been 

fulfilled. Calculations have been carried out for the following values of the geometric parameters: 

1) 15.02/;175.02/ 11 �� aaab ;  2) � �1/15.02/;245.02/ 111 /�� bbaaab .  
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Fig. 3. Spherical FG shallow shell and its planform 

Effect of the volume fraction exponent k  on linear frequencies ccL Eha � 2
1��  of FG 

shells of the materials FG1 and FG2 is shown in Fig 4a and Fig.4b respectively. 

a)                                                                                   b)

Fig.4. Influence of the power-law exponent k on the frequency parameter L� of the FG shallow 

shell with complex planform (a - material FG1, b – material FG2) 
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In the second case 2) the geometric shape of the plan (Fig. 3) goes to the elliptical and the results can 

be compared with the results of work [8].  These graphs show that they are practically the same, 

which confirms the accuracy of the solution of the linear problem in the case of complex geometry. 

a)       b)  

Fig.5. Backbone curves (a-material FG1, b-material FG2) 

Backbone curves of the FG spherical shells made of material FG1 are presented in Fig.5a, but for the 

shell made of material FG2 are shown in Fig 5b. Geometrical parameters coincide with parameters 

chosen for linear problem: 175.02/1 �ab ; 15.02/1 �aa . In the both cases the backbone curves have

a strong hardening behavior, monotonically increasing, which is typical for moderately thick clamped

shells ( 1.02/ �ah ).

It was established that if the ratio 25.02/1 /ab , i.e. 1/1 /bb , then the backbone curves 

approaches the corresponding curves for shells with elliptical planform, which confirms the validation 

of the presented results.

Conclusions  

This paper proposes the method of investigation of geometrically nonlinear free oscillations of 

functionally graded shallow shells with complex plan form. This method is based on the theory of R-

functions, Ritz’s variational method, procedures by Bubnov-Galerkin and Runge-Kutta methods. To 

clarify the theory of shallow shells of the 1-st order proposed approach is implemented within the 

POLE-RL. The conducted tests for shells that are based on the square and elliptical planform proves 
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the reliability and effectiveness of the proposed method, an illustration of which is made for shells 

with a complicated shape of the plan. In the future the developed method is planned to be used not 

only for the boundary conditions corresponding to the clamped FG shells, but for others, including 

mixed. In addition it would be interesting to apply the approach developed for the mathematical 

formulation of the problem in mixed form and not only in the movements. 
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